EFFECT OF CALCIUM ALGINATE COATING ON THE PERFORMANCE OF IMMOBILIZED YEAST CELLS IN CALCIUM ALGINATE BEADS

2000 ◽  
Vol 177 (1) ◽  
pp. 1-14 ◽  
Author(s):  
YOSHIMITSU UEMURA ◽  
NAOKl HAMAKAWA ◽  
HIDEKAZU YOSHIZAWA ◽  
HIROKI ANDO ◽  
KAZUYA IJICHIY ◽  
...  
2016 ◽  
Vol 217 ◽  
pp. 29-34 ◽  
Author(s):  
Maria Grazia Farbo ◽  
Pietro Paolo Urgeghe ◽  
Stefano Fiori ◽  
Salvatore Marceddu ◽  
Samir Jaoua ◽  
...  

Author(s):  
Andri Cahyo Kumoro ◽  
Astrilia Damayanti ◽  
Zuhriyan Ash Shiddieqy Bahlawan ◽  
Mira Melina ◽  
Heti Puspawati

Bioethanol is an environmentally benign renewable energy commonly obtained from glucose fermentation using Saccharomyces cerevisiae. The purposes of this study are to investigate the effects of time, temperature, pH, immobilized yeast cell loading, beads reuse during ethanol production through batch fermentation of glucose derived from oil palm empty fruit bunches by S. cerevisiae immobilized on Na-alginate beads and to compare the performance of fermentation using immobilized yeast cells and that of using a free cell system. The results revealed that time, temperature, pH, yeast mass and beads reuse significantly affected the ethanol and final glucose concentrations. As expected, a maximum ethanol concentration was obtained from fermentation using immobilized yeast cells at 30 °C, pH 5, and immobilized yeast cell loading of 0.75 g for 48 hours. However, fermentation with a free cell system at the same conditions resulted in lower ethanol yield. The highest ethanol concentration of 88.125 g/L with a productivity of 1.84 g/L·h was achieved from the second cycle fermentation using of immobilized cells beads. The results suggest that an immobilized cell system exhibits great potential applications for improved ethanol production due to its ability to sustain the stability of cell activity, reduce contamination tendency, and protect yeast cells from any possible inhibitions.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gulnur Arabaci ◽  
Ayse Usluoglu

Water pollution due to release of industrial wastewater has already become a serious problem in almost every industry using dyes to color its products. In this work, polyphenol oxidase enzyme from quince (Cydonia Oblonga) leaves immobilized on calcium alginate beads was used for the successful and effective decolorization of textile industrial effluent. Polyphenol oxidase (PPO) enzyme was extracted from quince (Cydonia Oblonga) leaves and immobilized on calcium alginate beads. The kinetic properties of free and immobilized PPO were determined. Quince leaf PPO enzyme stability was increased after immobilization. The immobilized and free enzymes were employed for the decolorization of textile dyes. The dye solutions were prepared in the concentration of 100 mg/L in distilled water and incubated with free and immobilized quince (Cydonia Oblonga) leaf PPO for one hour. The percent decolorization was calculated by taking untreated dye solution. Immobilized PPO was significantly more effective in decolorizing the dyes as compared to free enzyme. Our results showed that the immobilized quince leaf PPO enzyme could be efficiently used for the removal of synthetic dyes from industrial effluents.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153685 ◽  
Author(s):  
Shen-Fu Lin ◽  
Ying-Chen Chen ◽  
Ray-Neng Chen ◽  
Ling-Chun Chen ◽  
Hsiu-O Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document