HEAT AND MASS TRANSFER IN STAGNATION-POINT FLOW OF A POLAR FLUID TOWARDS A STRETCHING SURFACE IN POROUS MEDIA IN THE PRESENCE OF SORET, DUFOUR AND CHEMICAL REACTION EFFECTS

2010 ◽  
Vol 198 (2) ◽  
pp. 214-234 ◽  
Author(s):  
A. J. Chamkha ◽  
A. M. Aly
Author(s):  
Naramgari Sandeep ◽  
Chalavadi Sulochana ◽  
Isaac Lare Animasaun

With every passing day the heat transfer enhancement in the convectional base fluids plays a major role in several industrial and engineering processes. During these process nanofluids has attained its great importance to enhance the heat transfer rate in the convectional flows. Keeping this into view, in this study we investigated the stagnation point flow, heat and mass transfer behaviour of MHD Jeffrey nanofluid over a stretching surface in the presence of induced magneticfield, non-uniform heat source or sink and chemical reaction. Using similarity technique, the governing boundary layer partial differential equations are transformed into nonlinear coupled ordinary differential equations. The ordinary differential equations are solved numerically using Runge-Kutta-Felhberg scheme. An excellent agreement of the present results has been observed with the existed literature under some special cases. The effects of various dimensionless governing parameters on velocity, induced magneticfield, temperature and nanoparticle concentration profiles are discussed and presented through graphs. Also, friction factor, local Nusselt and Sherwood numbers are computed and discussed. Dual solutions are presented for suction and injection cases. It is found that dual solutions exist only for certain range of suction or injection parameter. It is also observed that an increase in the heat and mass transfer rate for higher values of Deborah number.


Author(s):  
S. M. M. EL-Kabeir ◽  
Ali Chamkha ◽  
A. M. Rashad

The thermal-diffusion and diffusion-thermo effects on heat and mass transfer by magnetohydrodynamic (MHD) mixed convection stagnation-point flow of a power-law non-Newtonian fluid towards a stretching surface in the presence of a magnetic field, thermal radiation and homogenous chemical reaction effects have been studied. A suitable set of dimensionless variables is used and similar equations governing the problem are obtained. The resulting equations have the property that they reduce to various special cases previously considered in the literature. An adequate implicit tri-diagonal finite-difference scheme is employed for the numerical solution of the obtained equations. Various comparisons with previously published work are performed and the results are found to be in excellent agreement. Representative results for the velocity, temperature, and concentration profiles as well as the local skin-friction coefficient, the local Nusselt number and the local Sherwood number illustrating the influence of the magnetic parameter, power-law fluid index, mixed convection parameter, concentration to thermal buoyancy ratio, thermal radiation, chemical reaction, and Dufour and Soret numbers are presented and discussed.


2012 ◽  
Vol 17 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed A. Afify ◽  
Nasser S. Elgazery

An analysis is carried out to study two dimensional stagnation-point flow of heat and mass transfer of an incompressible, electrically conducting fluid towards a heated porous stretching sheet embedded in a porous medium in the presence of chemical reaction, heat generation/absorption and suction or injection effects. A scaling group of transformations is applied to the governing equations. After finding three absolute invariants a third order ordinary differential equation corresponding to the momentum equation and two second order ordinary differential equation corresponding to energy and diffusion equations are derived. Furthermore the similarity equations are solved numerically by using shooting technique with fourth-order Runge–Kutta integration scheme. A comparison with known results is excellent. The phenomenon of stagnation-point flow towards a heated porous stretching sheet in the presence of chemical reaction, suction or injection with heat generation/absorption effects play an important role on MHD heat and mass transfer boundary layer. The results thus obtained are presented graphically and discussed.


2019 ◽  
Author(s):  
Isaac L. Animasaun

The significance of chemical reaction is inevitable and there exist many kinds in real life. Recently, the concept of quartic autocatalytic kind of chemical reaction was appraised (Refs. [10] – [16]). It is worth remarking that the concept had been wrongly used in a recently published paper. To avoid confusion, this unpublished paper is presented for clarification. In the report “entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanomaterial, International Journal of Heat and Mass Transfer <a>127</a>, <a>829</a> – <a>837</a>”, the author investigated cubic autocatalytic kind of chemical reaction between non-Newtonian Sisko fluid and two molecules of catalyst situated at the surface. However, in three different places including the title, the author claimed that the reaction is quartic autocatalysis.<br>


Sign in / Sign up

Export Citation Format

Share Document