scholarly journals Assessment of drought resistance of Kentucky bluegrass(Poa pratensis)varieties at seedling stage

2006 ◽  
Vol 34 (4) ◽  
pp. 319-328 ◽  
Author(s):  
QI Chai ◽  
Zheng Gang Guo ◽  
Ji Zhou Ren ◽  
Zhi Biao Nan
1994 ◽  
Vol 119 (6) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yuguang Zhao ◽  
George C.J. Fernandez ◽  
Daniel C. Bowman ◽  
Robert S. Nowak

Cumulative evapotranspiration (ETcum) patterns of 10 commercially available cool-season turfgrass species and cultivars were evaluated under progressive water stress in the semi-field conditions using a gravimetric mass balance method in three studies. At the end of water stress, the cultivars were visually scored for green appearance on a 0 (no green) to 10 (100% green) scale. A Gompertz nonlinear model gave a best fit to ETcum vs. days adjusted for pan evaporation variation. Two of the ETcum attributes (ti, the time during which the rate change in ET is zero, and ETmax, the maximum ET rate) estimated from the Gompertz model appeared to reflect efficient water-use attributes in the turfgrass. Among the physiological screening techniques studied, electrolyte leakage, relative water content, and the difference between canopy and air temperature appeared to separate cultivars by drought resistance and water use efficiency (WUE). These physiological attributes were also relatively easy to measure and had high correlations with color score and WUE. Biplot display is a graphical technique in which the interrelationships between the cultivars and water-use attributes can be displayed together. Based on ti, ETmax, color score, and physiological attributes, `Wabash' and `Bristol' Kentucky bluegrass (Poa pratensis L.), `Aurora' hard fescue (Festuca ovina var. duriuscula L. Koch.), and `FRT-30149' fine fescue (F. rubra L.) were identified as cultivars with higher WUE.


1979 ◽  
Vol 25 (10) ◽  
pp. 1197-1200 ◽  
Author(s):  
R. C. Shearman ◽  
W. L. Pedersen ◽  
R. V. Klucas ◽  
E. J. Kinbacher

Associative nitrogen fixation in Kentucky bluegrass (Poa pratensis L.) turfs inoculated with five nitrogen-fixing bacterial isolates was evaluated using the acetylene reduction assay and nitrogen accumulation as indicators of fixation. 'Park' and 'Nugget' Kentucky bluegrass turfs were grown in controlled environment chambers and inoculated with Klebsiella pneumoniae (W-2, W-6, and W-14), Erwinia herbicola (W-8), and Enterobacter cloacae (W-11). 'Park' inoculated with K. pneumoniae (W-6) had significant acetylene reduction activity using undisturbed turfs. Other treatments including turfs treated with heat-killed cells had no significant difference in acetylene reduction. In a second study, 'Park' and 'South Dakota Certified' turfs were grown in a greenhouse and inoculated with K. pneumoniae (W-6) and E. herbicola (W-8). 'Park' inoculated with K. pneumoniae (W-6) had increased acetylene reduction activity rates and also a greater nitrogen accumulation in aerial tissues when compared to controls. Acetylene reduction activity was correlated (r = 0.92) to nitrogen accumulation. Other treatments did not effectively increase acetylene reduction activity or nitrogen accumulation.


1981 ◽  
Vol 27 (1) ◽  
pp. 52-56 ◽  
Author(s):  
L. V. Wood ◽  
R. V. Klucas ◽  
R. C. Shearman

Turfs of 'Park' Kentucky bluegrass reestablished in the greenhouse and inoculated with Klebsiella pneumoniae (W6) showed significantly increased nitrogen fixation (acetylene reduction) compared with control turfs. Mean ethylene production rates per pot were 368 nmol h−1 for K. pneumoniae treated turfs, 55 nmol h−1 for heat-killed K. pneumoniae treated turfs, and 44 nmol h−1 for untreated turfs. Calculated lag periods before activity was observed were generally very short (less than 1 h).When 'Park' Kentucky bluegrass was grown from seed on soil-less medium of Turface, a fired aggregate clay, inoculation with K. pneumoniae (W6) resulted in 9 of 11 turfs showing nitrogenase activity (mean ethylene producion rate per pot was 195 nmol h−1). Only 3 of 11 turfs treated with heat-killed K. pneumoniae showed any activity and their mean rate of ethylene production (40 nmol h−1 per pot) was significantly lower than that for turfs treated with K. pneumoniae.Using the 'Park'–Turface soil-less model system it was shown that acetylene reducing activity was (i) root associated, (ii) generally highest at a depth of 1–4 cm below the surface, (iii) enhanced by washing excised roots, and (iv) inhibited by surface sterilization of excised roots. Klebsiella pneumoniae was recovered from Turface and roots showing acetylene reducing activity.


1979 ◽  
Vol 59 (2) ◽  
pp. 469-473 ◽  
Author(s):  
R. G. INGRATTA ◽  
G. R. STEPHENSON ◽  
C. M. SWITZER

Optimum top growth of annual bluegrass (Pao annua L.) and Kentucky bluegrass (Poa pratensis L.) was obtained at 24/12 °C day/night temperature regime in controlled environment studies. The tolerance of seedling Kentucky bluegrass to linuron [3-(3,4-dichlorophenyl)-1)methylurea] appeared to be greatest at this temperature regime when photoperiods were 16 h in length. A granular formulation of linuron gave excellent control of annual bluegrass in Kentucky bluegrass turf at 6.7 kg/ha when applied postemergence. At this rate, all culitivars of Kentucky bluegrass tested, with the exception of Fylking, were tolerant to linuron as a granular formulation. After application of linuron at 3.4–6.7 kg/ha, phytotoxic residues remained in the soil at sufficient levels to injure seedling Kentucky bluegrass for up to 3 mo.


Sign in / Sign up

Export Citation Format

Share Document