Dislocation nucleation from surface steps: atomistic simulation in aluminium

2000 ◽  
Vol 80 (3) ◽  
pp. 503-524 ◽  
Author(s):  
S. Brochard, P. Beauchamp, J. Grilhe
2000 ◽  
Vol 80 (3) ◽  
pp. 503-524 ◽  
Author(s):  
S. Brochard ◽  
P. Beauchamp ◽  
J. Grilhé

2008 ◽  
Vol 1090 ◽  
Author(s):  
Mark E. Twigg ◽  
Yoosuf N. Picard ◽  
Nabil D. Bassim ◽  
Joshua D. Caldwell ◽  
Michael A. Mastro ◽  
...  

AbstractUsing transmission electron microscopy, we have analyzed dislocations in AlN nucleation layers and GaN films grown by metallorganic chemical vapor deposition (MOCVD) on the (0001) surface of epitaxially-grown 4H-SiC mesas with and without steps. For 4H-SiC substrates free of SiC surface steps, half-loop nucleation and glide parallel to the AlN/SiC interfacial plane play the dominant role in strain relief, with no mechanism for generating threading dislocations. In contrast, 4H-SiC mesa surfaces with steps give rise to regions of high stress at the heteroepitaxial interface, thereby providing an environment conducive to the nucleation and growth of threading dislocations, which act to accommodate misfit strain by the tilting of threading edge dislocations.


Author(s):  
Jie Lian ◽  
Junlan Wang

In this study, intrinsic size effect — strong size dependence of mechanical properties — in materials deformation was investigated by performing atomistic simulation of compression on Au (114) pyramids. Sample boundary effect — inaccurate measurement of mechanical properties when sample size is comparable to the indent size — in nanoindentation was also investigated by performing experiments and atomistic simulations of nanoindentation into nano- and micro-scale Au pillars and bulk Au (001) surfaces. For intrinsic size effect, dislocation nucleation and motions that contribute to size effect were analyzed for studying the materials deformation mechanisms. For sample boundary effect, in both experiments and atomistic simulation, the elastic modulus decreases with increasing indent size over sample size ratio. Significantly different dislocation motions contribute to the lower value of the elastic modulus measured in the pillar indentation. The presence of the free surface would allow the dislocations to annihilate, causing a higher elastic recovery during the unloading of pillar indentation.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 184-189 ◽  
Author(s):  
P.M. Derlet ◽  
P. Gumbsch ◽  
R. Hoagland ◽  
J. Li ◽  
D.L. McDowell ◽  
...  

AbstractInternal microstructural length scales play a fundamental role in the strength and ductility of a material. Grain boundaries in nanocrystalline structures and heterointerfaces in nanolaminates can restrict dislocation propagation and also act as a source for new dislocations, thereby affecting the detailed dynamics of dislocation-mediated plasticity. Atomistic simulation has played an important and complementary role to experiment in elucidating the nature of the dislocation/interface interaction, demonstrating a diversity of atomic-scale processes covering dislocation nucleation, propagation, absorption, and transmission at interfaces. This article reviews some atomistic simulation work that has made progress in this field and discusses possible strategies in overcoming the inherent time scale challenge of finite temperature molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document