Relaxation kinetics of the long-range order parameter in a non-uniform system studied by the phase field method using the free energy obtained by the cluster variation method

Author(s):  
Munekazu Ohno ◽  
Tetsuo Mohri
2007 ◽  
Vol 561-565 ◽  
pp. 1935-1940
Author(s):  
Tetsuo Mohri ◽  
Nao Fujihashi ◽  
Ying Chen

Phase Field Method is combined with the Cluster Variation Method within the square approximation, and the multiscale ordering behavior from atomistic to microstructural evolution process of ordered domains in the two dimensional square lattice is investigated. The transition temperature is determined at 1:1 stoichiometric composition and it is confirmed that the transition is of the second order. The growth process of the ordered domains is visualized and it is revealed that the sharp decrease of the free energy takes place during the process.


2005 ◽  
Vol 475-479 ◽  
pp. 3075-3080 ◽  
Author(s):  
Tetsuo Mohri ◽  
Munekazu Ohno ◽  
Ying Chen

Phase Field Method (PFM) is hybridized with Cluster Variation Method (CVM) to investigate the ordering dynamics of L10-disorder transition at atomistic and microstructural scales simultaneously. For this, coarse graining operation is attempted on the inhomogeneous free energy functional of CVM. The resultant gradient energy coefficient is found out to be dependent on temperature and order parameters, which is in marked contrast to a conventional PFM formalism. Electronic structure total energy calculations for Fe-Pd system are incorporated to the hybridized scheme and the first principles calculation of microstructural evolution process is attempted.


2009 ◽  
Vol 631-632 ◽  
pp. 401-406
Author(s):  
Munekazu Ohno ◽  
Ying Chen ◽  
Tetsuo Mohri

Multi-scale simulation of ordering process from electronic, atomistic scales to microstructural scale was carried out by hybridizing Phase Field Method (PFM) and Cluster Variation Method (CVM). The hybrid model was applied to disorder-L10 ordering process in Fe-Pd system. Furthermore, computation of relaxation constants in the PFM was attempted based on Path Probability Method (PPM) which is the time evolution version of the CVM, within a linearized analysis of order-order relaxation process.


2002 ◽  
Vol 753 ◽  
Author(s):  
M. Ohno ◽  
T. Mohri

ABSTRACTDuring ordering process, anti-site ordering proceeds in atomistic scale and anti-phase domain structure evolves in microstructural scale. In order to describe both the processes, a hybridized calculation of the Phase Field Method(PFM) and Cluster Variation Method(CVM) is attempted. The main objective of the present study is focused on the time evolution of atomic configuration during L10 ordering processes below and above the spinodal ordering temperature and their resultant microstructures. In order to investigate the interplay between atomistic and microstructural processes, we conducted two types of calculations. One is for a homogeneous system without an anti-phase boundary and the other is for an inhomogeneous system in which microstructure is formed by anti-phase domains.For the homogeneous system, the relaxation curve of Long-Range-Order parameter(LRO) indicates a transient appearance of an L12-like atomic configuration below the spinodal ordering temperature. Such an L12–like state corresponds to a saddle point configuration in the CVM free energy surface. When the composition of an alloy is located near L10 + L12 phase field in the phase diagram, the L12–like phase becomes highly ordered state.For the inhomogeneous system, it is implied that the appearance of the L12-like phase affects the resultant microstructure by providing the nucleation sites for the L10 ordered phase.


2007 ◽  
Vol 546-549 ◽  
pp. 1333-1338 ◽  
Author(s):  
Jin Cheng Wang ◽  
M. Osawa ◽  
Tadaharu Yokokawa ◽  
Hiroshi Harada ◽  
Masato Enomoto

A calculation of the interface energy for the Ni-Al binary alloy, including the inter-phase boundary (IPB) energy and the anti-phase boundary (APB) energy, has been performed using the Cluster Variation Method (CVM) with the tetrahedron approximation within the temperature range of 600°C~1300°C. The calculated IPB energies range between 8 and 13 mJ/m2, while the APB energies range between 24 and 46 mJ/m2. Additionally, the dependence of the average composition and the order parameter on distance with the compositionally diffuse interfacial regions has been computed. The calculation also shows the width of the diffuse IPB increases with the temperature linearly.


2007 ◽  
Vol 539-543 ◽  
pp. 2425-2430 ◽  
Author(s):  
Tetsuo Mohri ◽  
Yoshitaka Kobayashi

Modeling of Glass transition is attempted based on the Cluster Variation Method. Free energy functional of an L10 ordered phase is employed to describe the first order nature of the transition. Free energy contour surface calculated as a function of temperature and an order parameter which simulates an amount of defects provides a generalized stability diagram in which the ideal glass transition temperature is identified as a critical point. Transition kinetics is investigated by Path Probability Method which is the kinetics version of the CVM to time domain. Continuous cooling behavior is calculated by explicitly incorporating the temperature dependent viscosity term based on VFT (Vogel-Fulcher-Tamman) formula. The glass transition is realized as the freezing of the order parameter due to the enhanced viscosity. The extension of the present theoretical scheme to non-Bravais lattice is attempted by Continuous Cluster Variation Method.


2011 ◽  
Vol 1296 ◽  
Author(s):  
Tetsuo Mohri

ABSTRACTCluster Variation Method (CVM) has been recognized as one of the most reliable theoretical tools to incorporate wide range of atomic correlations into a free energy formula. By combining CVM with electronic structure total energy calculations, one can perform first-principles calculations of alloy phase equilibria. The author attempted such CVM-based first-principles calculations for various alloy systems including noble metal alloys, transition-noble alloys, III-V semiconductor alloys and Fe-based alloy systems. Furthermore, CVM can be extended to two kinds of kinetics calculations. One is Path Probability Method (PPM) which is the natural extension of the CVM to time domain and is quite powerful to investigate atomistic kinetic phenomena. The other one is Phase Field Method (PFM) with the CVM free energy as a homogeneous free energy density term in the PFM. The author’s group applied the latter procedure to study time evolution process of ordered domains associated with disorder-L10 transition in Fe-Pd and Fe-Pt systems. CVM has, therefore, a potential applicability for the systematic studies covering atomistic to microstructural scales. It has been, however, pointed out that the conventional CVM is not able to include local lattice relaxation effects and that the resulting order-disorder transition temperatures are overestimated. In order to circumvent such inconveniences, Continuous Displacement Cluster Variation Method (CDCVM) has been developed. Since first-principles CDCVM calculations are still beyond the scope at the present stage, preliminary results on the two dimensional square lattice and an fcc lattice with primitive Lennard-Jones type potentials are demonstrated in the last section.


Sign in / Sign up

Export Citation Format

Share Document