Thermodynamic investigation of nano-phase change materials as heat transfer fluid-heat exchanger for thermal-energy storage in concentrating solar thermo-electric generation systems

2018 ◽  
Vol 41 (14) ◽  
pp. 1587-1593
Author(s):  
Shrikant Ulhas Chaudhari ◽  
Guniram R. Selokar
2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 527-533 ◽  
Author(s):  
Xiaoyan Li ◽  
Rongpeng Huang ◽  
Xinyue Miao ◽  
Xuelei Wang ◽  
Yabin Liu ◽  
...  

In order to improve the thermal performance of thermal energy storage systems, a packed bed thermal energy storage systems unit using spherical capsules filled with multiple phase change materials (multi-PCM) for use in conventional air-conditioning systems is presented. A 3-D mathematical model was established to investigate the charging characteristics of the thermal energy storage systems unit. The optimum proportion between the multi-PCM was identified. The effects of heat transfer fluid-flow rate and heat transfer fluid inlet temperature on the liquid phase change materials volume fraction, charging time and charging capacity of the thermal energy storage system unit are studied. The results indicate that the charging capacity of multi-PCM units is higher than that of the conventional single-PCM (HY-2). For proportions 0:1:0, 2:3:3, 3:2:3, 3:3:2, 4:1:3, and 4:2:2, the charging capacity decreases by approximately 24.84%, 14.69%, 6.47%, 3.82%, and 1.13%, respectively, compared to the 4:2:2 proportion. Moreover, decreasing the heat transfer fluid inlet temperature can obviously shorten the complete charging time of the thermal energy storage systems unit.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Joel E. Skinner ◽  
Matthew N. Strasser ◽  
Brad M. Brown ◽  
R. Panneer Selvam

Concrete is tested as a sensible heat thermal energy storage (TES) material in the temperature range of 400–500 °C (752–932 °F). A molten nitrate salt is used as the heat transfer fluid (HTF); the HTF is circulated though stainless steel heat exchangers, imbedded in concrete test prisms, to charge the TES system. During charging, significant cracking occurs in both the radial and longitudinal directions in the concrete prisms. The cracking is due to hoop stress induced by the dissimilar thermal strain rates of concrete and stainless steel. A 2D finite element model (FEM) is developed and used to study the stress at the prism/exchanger interface. Polytetrafluoroethylene (PTFE) and a heat-curing, fibered paste (HCFP) are tested as interface materials to mitigate the stress in the concrete. Significant reduction in the size and number of cracks is observed after incorporating interface materials. A heat exchanger with a helical fin configuration is incorporated to improve the heat transfer rate in the concrete. Testing confirms that the fins increase the rate of heat transfer in the concrete; however, large cracks form at each of the fin locations. Only the HCFP is tested as an interface material for the finned heat exchanger. The HCFP decreases the number and size of the cracks, however, not to the desired hairline levels.


2021 ◽  
Vol 11 (11) ◽  
pp. 4848
Author(s):  
Hitoshi Kiyokawa ◽  
Hiroki Tokutomi ◽  
Shinichi Ishida ◽  
Hiroaki Nishi ◽  
Ryo Ohmura

Kinetic characteristics of thermal energy storage (TES) using tetrabutylammonium acrylate (TBAAc) hydrate were experimentally evaluated for practical use as PCMs. Mechanical agitation or ultrasonic vibration was added to detach the hydrate adhesion on the heat exchanger, which could be a thermal resistance. The effect of the external forces also was evaluated by changing their rotation rate and frequency. When the agitation rate was 600 rpm, the system achieved TES density of 140 MJ/m3 in 2.9 hours. This value is comparable to the ideal performance of ice TES when its solid phase fraction is 45%. UA/V (U: thermal transfer coefficient, A: surface area of the heat exchange coil, V: volume of the TES medium) is known as an index of the ease of heat transfer in a heat exchanger. UA/V obtained in this study was comparable to that of other common heat exchangers, which means the equivalent performance would be available by setting the similar UA/V. In this study, we succeeded in obtaining practical data for heat storage by TBAAc hydrate. The data obtained in this study will be a great help for the practical application of hydrate heat storage in the future.


Author(s):  
Emerson E. John ◽  
W. Micah Hale ◽  
R. Panneer Selvam

In recent years due to rising energy costs as well as an increased interest in the reduction of greenhouse gas emissions, there is great interest in developing alternative sources of energy. One of the most viable alternative energy resources is solar energy. Concentrating solar power (CSP) technologies have been identified as an option for meeting utility needs in the U.S. Southwest. Areas where CSP technologies can be improved are improved heat transfer fluid (HTF) and improved methods of thermal energy storage (TES). One viable option for TES storage media is concrete. The material costs of concrete can be very inexpensive and the costs/ kWhthermal, which is based on the operating temperature, are reported to be approximately $1. Researchers using concrete as a TES storage media have achieved maximum operating temperatures of 400°C. However, there are concerns for using concrete as the TES medium, and these concerns center on the effects and the limitations that the high temperatures may have on the concrete. As the concrete temperature increases, decomposition of the calcium hydroxide (CH) occurs at 500°C, and there is significant strength loss due to degeneration of the calcium silicate hydrates (C-S-H). Additionally concrete exposed to high temperatures has a propensity to spall explosively. This proposed paper examines the effect of heating rates on high performance concrete mixtures. Concrete mixtures with water to cementitious material ratios (w/cm) of 0.15 to 0.30 and compressive strengths of up to 180 MPa (26 ksi) were cast and subjected to heating rates of 3, 5, 7, and 9° C/min. These concrete mixtures are to be used in tests modules where molten salt is used as the heat transfer fluid. Molten salt becomes liquid at temperatures exceeding 220°C and therefore the concrete will be exposed to high initial temperatures and subsequently at controlled heating rates up to desired operating temperatures. Preliminary results consistently show that concrete mixtures without polypropylene fibres (PP) cannot resist temperatures beyond 500° C, regardless of the heating rate employed. These mixtures spall at higher temperatures when heated at a faster rate (7° C/min). Additionally, mixtures which incorporate PP fibres can withstand temperatures up to 600° C without spalling irrespective of the heating rate.


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


2018 ◽  
Vol 70 ◽  
pp. 01010
Author(s):  
Marta Kuta ◽  
Dominika Matuszewska ◽  
Tadeusz Michał Wójcik

Increasing energy consumption in residential and public buildings requires development of new technologies for thermal energy production and storage. One of possibilities for the second listed need is the use of phase change materials (PCMs). This work is focused on solutions in this area and consists of two parts. First one is focused on different designs of thermal energy storage (TES) tanks based on the phase change materials. The second part is the analysis of tests results for TES tank containing shelf and tube heat exchanger and filled with phase change material. Thermal energy storage tank is analyzed in order to use it in domestic heating and hot utility water installations. The aim of this research was to check the applicability of phase change material for mentioned purpose. Results show that using phase change materials for thermal energy storage can increase amount of stored heat. The use of properly selected PCM and heat exchanger enables the process of thermal energy storing and releasing to become more efficient.


Sign in / Sign up

Export Citation Format

Share Document