Experimental Investigation on Fluid Flow Maldistribution in Plate-Fin Heat Exchangers

2003 ◽  
Vol 24 (4) ◽  
pp. 25-31 ◽  
Author(s):  
Jiao Anjun ◽  
Li Yanzhong ◽  
Chen ChunZheng ◽  
Zhang Rui
2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040111
Author(s):  
Shu-Ling Tian ◽  
Ying-Ying Shen ◽  
Yao Li ◽  
Hai-Bo Wang ◽  
Sheryar Muhammad ◽  
...  

Plate-fin heat exchangers are widely used in industry at present due to their compact structure and high efficiency. However, there is a problem of flow maldistribution, resulting in poor performance of heat exchangers. The influence of the header configuration on fluid flow distribution is studied by using CFD software FLUENT. The numerical results show that the fluid flow inside the header is seriously uneven. The reliability of the numerical simulation is validated against the published results. They are found to be basically consistent within considerable error. The optimal number of the punch baffle is investigated. Various header configuration with different opening ratios have been studied under the same boundary conditions. The gross flow maldistribution parameter (S) is used to evaluate flow nonuniformity, and the flow maldistribution parameters of different schemes under different Reynolds numbers are listed and compared. The optimal header with minimum flow maldistribution parameter is obtained through the performance analysis of headers. It is found that the flow maldistribution of the improved header is significantly smaller compared with the conventional header. Hence, the efficiency of the heat exchanger is effectively enhanced. The conclusion provides a reference for the optimization design of plate-fin heat exchanger.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 314 ◽  
Author(s):  
Hanbing Ke ◽  
Yuansheng Lin ◽  
Zhiwu Ke ◽  
Qi Xiao ◽  
Zhiguo Wei ◽  
...  

The maldistribution of fluid flow through multi-channels is a critical issue encountered in many areas, such as multi-channel heat exchangers, electronic device cooling, refrigeration and cryogenic devices, air separation and the petrochemical industry. In this paper, the uniformity of flow distribution in a printed circuit heat exchanger (PCHE) is investigated. The flow distribution and resistance characteristics of a PCHE plate are studied with numerical models under different flow distribution cases. The results show that the sudden change in the angle of the fluid at the inlet of the channel can be greatly reduced by using a spreader plate with an equal inner and outer radius. The flow separation of the fluid at the inlet of the channel can also be weakened and the imbalance of flow distribution in the channel can be reduced. Therefore, the flow uniformity can be improved and the pressure loss between the inlet and outlet of PCHEs can be reduced. The flow maldistribution in each PCHE channel can be reduced to ± 0.2%, and the average flow maldistribution in all PCHE channels can be reduced to less than 5% when the number of manifolds reaches nine. The numerical simulation of fluid flow distribution can provide guidance for the subsequent research and the design and development of multi-channel heat exchangers. In summary, the symmetry of the fluid flow in multi-channels for PCHE was analyzed in this work. This work presents the frequently encountered problem of maldistribution of fluid flow in engineering, and the performance promotion leads to symmetrical aspects in both the structure and the physical process.


2007 ◽  
Vol 28 (5) ◽  
pp. 435-443 ◽  
Author(s):  
Fantu A. Tereda ◽  
N. Srihari ◽  
Bengt Sunden ◽  
Sarit K. Das

Sign in / Sign up

Export Citation Format

Share Document