Iterative Regularization and Generalized Discrepancy Principle for Monotone Operator Equations

2007 ◽  
Vol 28 (1-2) ◽  
pp. 13-25 ◽  
Author(s):  
Anatoly Bakushinsky ◽  
Alexandra Smirnova
Author(s):  
Auwal Bala Abubakar ◽  
Poom Kumam ◽  
Hassan Mohammad ◽  
Abdulkarim Hassan Ibrahim

2008 ◽  
Vol 8 (1) ◽  
pp. 86-98 ◽  
Author(s):  
S.G. SOLODKY ◽  
A. MOSENTSOVA

Abstract The problem of approximate solution of severely ill-posed problems given in the form of linear operator equations of the first kind with approximately known right-hand sides was considered. We have studied a strategy for solving this type of problems, which consists in combinating of Morozov’s discrepancy principle and a finite-dimensional version of the Tikhonov regularization. It is shown that this combination provides an optimal order of accuracy on source sets


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 331
Author(s):  
Bernd Hofmann ◽  
Christopher Hofmann

This paper deals with the Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. One focus is on the application of the discrepancy principle for choosing the regularization parameter and its consequences. Numerical case studies are performed in order to complement analytical results concerning the oversmoothing situation. For example, case studies are presented for exact solutions of Hölder type smoothness with a low Hölder exponent. Moreover, the regularization parameter choice using the discrepancy principle, for which rate results are proven in the oversmoothing case in in reference (Hofmann, B.; Mathé, P. Inverse Probl. 2018, 34, 015007) is compared to Hölder type a priori choices. On the other hand, well-known analytical results on the existence and convergence of regularized solutions are summarized and partially augmented. In particular, a sketch for a novel proof to derive Hölder convergence rates in the case of oversmoothing penalties is given, extending ideas from in reference (Hofmann, B.; Plato, R. ETNA. 2020, 93).


2004 ◽  
Vol 2004 (37) ◽  
pp. 1973-1996 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Simplified regularization using finite-dimensional approximations in the setting of Hilbert scales has been considered for obtaining stable approximate solutions to ill-posed operator equations. The derived error estimates using an a priori and a posteriori choice of parameters in relation to the noise level are shown to be of optimal order with respect to certain natural assumptions on the ill posedness of the equation. The results are shown to be applicable to a wide class of spline approximations in the setting of Sobolev scales.


2017 ◽  
Vol 25 (5) ◽  
pp. 543-551 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

AbstractRecently, Semenova [12] considered a derivative free iterative method for nonlinear ill-posed operator equations with a monotone operator. In this paper, a modified form of Semenova’s method is considered providing simple convergence analysis under more realistic nonlinearity assumptions. The paper also provides a stopping rule for the iteration based on an a priori choice of the regularization parameter and also under the adaptive procedure considered by Pereverzev and Schock [11].


2019 ◽  
Vol 22 (3) ◽  
pp. 699-721 ◽  
Author(s):  
Ye Zhang ◽  
Bernd Hofmann

Abstract In this paper, we study a fractional-order variant of the asymptotical regularization method, called Fractional Asymptotical Regularization (FAR), for solving linear ill-posed operator equations in a Hilbert space setting. We assign the method to the general linear regularization schema and prove that under certain smoothness assumptions, FAR with fractional order in the range (1, 2) yields an acceleration with respect to comparable order optimal regularization methods. Based on the one-step Adams-Moulton method, a novel iterative regularization scheme is developed for the numerical realization of FAR. Two numerical examples are given to show the accuracy and the acceleration effect of FAR.


Sign in / Sign up

Export Citation Format

Share Document