Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point

2017 ◽  
Vol 31 (19-20) ◽  
pp. 1030-1050 ◽  
Author(s):  
Ryuta Ozawa ◽  
Kenji Tahara
10.5772/56479 ◽  
2013 ◽  
Vol 10 (10) ◽  
pp. 340 ◽  
Author(s):  
Anna Lisa Ciancio ◽  
Loredana Zollo ◽  
Gianluca Baldassarre ◽  
Daniele Caligiore ◽  
Eugenio Guglielmelli

2020 ◽  
Vol 17 (01) ◽  
pp. 1950029
Author(s):  
Christopher Hazard ◽  
Nancy Pollard ◽  
Stelian Coros

Grasp planning and motion synthesis for dexterous manipulation tasks are traditionally done given a pre-existing kinematic model for the robotic hand. In this paper, we introduce a framework for automatically designing hand topologies best suited for manipulation tasks given high-level objectives as input. Our pipeline is capable of building custom hand designs around specific manipulation tasks based on high-level user input. Our framework comprises of a sequence of trajectory optimizations chained together to translate a sequence of objective poses into an optimized hand mechanism along with a physically feasible motion plan involving both the constructed hand and the object. We demonstrate the feasibility of this approach by synthesizing a series of hand designs optimized to perform specified in-hand manipulation tasks of varying difficulty. We extend our original pipeline 32 to accommodate the construction of hands suitable for multiple distinct manipulation tasks as well as provide an in depth discussion of the effects of each non-trivial optimization term.


Robotica ◽  
2019 ◽  
Vol 38 (7) ◽  
pp. 1242-1262 ◽  
Author(s):  
Nutan Chen ◽  
Göran Westling ◽  
Benoni B. Edin ◽  
Patrick van der Smagt

SUMMARYThe study of dexterous manipulation has provided important insights into human sensorimotor control as well as inspiration for manipulation strategies in robotic hands. Previous work focused on experimental environment with restrictions. Here, we describe a method using the deformation and color distribution of the fingernail and its surrounding skin to estimate the fingertip forces, torques, and contact surface curvatures for various objects, including the shape and material of the contact surfaces and the weight of the objects. The proposed method circumvents limitations associated with sensorized objects, gloves, or fixed contact surface type. In addition, compared with previous single finger estimation in an experimental environment, we extend the approach to multiple finger force estimation, which can be used for applications such as human grasping analysis. Four algorithms are used, c.q., Gaussian process, convolutional neural networks, neural networks with fast dropout, and recurrent neural networks with fast dropout, to model a mapping from images to the corresponding labels. The results further show that the proposed method has high accuracy to predict force, torque, and contact surface.


Author(s):  
Yunus Ziya Arslan ◽  
Yuksel Hacioglu ◽  
Yener Taskin ◽  
Nurkan Yagiz

Due to the dexterous manipulation capability and low metabolic energy consumption property of the human hand, many robotic hands were designed and manufactured that are inspired from the human hand. One of the technical challenges in designing biomimetic robot hands is the control scheme. The control algorithm used in a robot hand is expected to ensure the tracking of reference trajectories of fingertips and joint angles with high accuracy, reliability, and smoothness. In this chapter, trajectory-tracking performances of different types of widely used control strategies (i.e. classical, robust, and intelligent controllers) are comparatively evaluated. To accomplish this evaluation, PID, sliding mode, and fuzzy logic controllers are implemented on a biomimetic robot hand finger model and simulation results are quantitatively analyzed. Pros and cons of the corresponding control algorithms are also discussed.


2013 ◽  
Vol 58 (2) ◽  
pp. 505-508 ◽  
Author(s):  
S. Sunada ◽  
N. Nunomura

Powder metallurgy (P/M) process has the advantage of better formability to fabricate complex shape products without machining and welding. And recently this P/M process has been applied to the production of aluminum alloys. The P/M aluminum alloys thus produced also have received considerable interest because of their fine and homogeneous structure. Many papers have been published on the mechanical properties of the aluminum alloys produced by P/M process while there have been few on their corrosion properties from the view point of electrochemistry. In this experiment, therefore, two kinds of 7075 aluminum alloys prepared by the conventional ingot metallurgy (I/M) process and P/M process were used, I/M material is commercially available. and their corrosion behavior were investigated through the electrochemical tests such as potentiodynamic polarization test, slow rate strain tensile (SSRT) test and electrochemical impedance spectroscopy (EIS) measurement under SSRT test in the corrosion solution and the deionized water.


Sign in / Sign up

Export Citation Format

Share Document