The influence of Er:YAG laser irradiation on re-bonding shear bond strength of enamel

Author(s):  
Huimin Fang ◽  
Caitian Teng ◽  
Pengfei Lu ◽  
Yang Cao ◽  
Qing Yu
2020 ◽  
Vol 32 (1) ◽  
pp. 21-29
Author(s):  
Ehsan Morshedi ◽  
Maryam Azimi Zavaree ◽  
Seyed Mohammad Reza Hakimaneh ◽  
Sayed Shojaedin Shayegh ◽  
Maryam Pirmoradian ◽  
...  

2013 ◽  
Vol 83 (6) ◽  
pp. 973-980 ◽  
Author(s):  
Serkan Sağır ◽  
Aslıhan Usumez ◽  
Ebru Ademci ◽  
Serdar Usumez

ABSTRACT Objective: To compare the effect of laser irradiation at two different pulse settings and acid etching on the shear bond strength (SBS) of orthodontic brackets to enamel. Materials and Methods: Thirty-six premolars were allocated to three groups (n  =  12): (1) 37% phosphoric acid etching, (2) erbium-doped yttrium aluminum garnet (Er:YAG) laser etching with medium-short pulse mode (MSP; 100 µs, 120 mj, 10 Hz, 1.2 W), and (3) Er:YAG laser etching with quantum-square pulse mode (QSP; 120 mj, 10 Hz, 1.2 W). Metallic brackets were bonded with Transbond XT. After photopolymerization, the samples were subjected to 5000 thermal cycles and debonded with a universal testing machine, and the SBS values were recorded. Surface morphology was evaluated with profilometric examination, scanning electron microscopy, and atomic force microscopy. The adhesive remnant index (ARI) was evaluated to assess the remaining adhesive. Results: The results of SBS testing were analyzed by one-way analysis of variance and Tukey honestly significant diffference tests. The mean SBS values of QSP and MSP laser groups were 11.80 ± 2.7 MPa and 10.10 ± 4.5 MPa, respectively, and the QSP group demonstrated significantly higher SBS (P < .01) than that of the acid-etched group (6.6 ± 2.4 MPa). No significant difference was observed between the SBS values of the two laser groups (P < .05). The difference between the ARI scores of the laser groups and the acid-etched group was statistically significant (P < .05). Conclusion: Laser etching at MSP and QSP modes present successful alternatives to acid etching; however, long-term clinical studies are required to verify clinical success.


2020 ◽  
Vol 25 (1) ◽  
pp. 28-35
Author(s):  
Fernando César Moreira ◽  
Helder Baldi Jacob ◽  
Luis Geraldo Vaz ◽  
Antonio Carlos Guastaldi

ABSTRACT Objective: The purpose of this study was to evaluate the effect of the Yd:YAG laser irradiation on orthodontic bracket base surface. Shear bond strength (SBS) values and sites of the bonding failure interfaces were quantified. Methods: Brackets were divided into two groups: OP (One Piece - integral sandblast base) and OPL (One Piece - laser irradiation). The brackets were randomly bonded on an intact enamel surface of 40 bovine incisors. The SBS tests were carry out using a universal test machine. A stereomicroscopy was used to evaluate the adhesive remnant index (ARI), and surface characterization was performed by scanning electron microscopy (SEM). Student’s t-test was used to compare the SBS between the two groups (p< 0.05). Frequencies and chi-square analysis were applied to evaluate the ARI scores. Results: OPL group showed higher value (p< 0.001) of SBS than OP group (43.95 MPa and 34.81 MPa, respectively). ARI showed significant difference (p< 0.001) between OPL group (ARI 0 = 100%) and OP group (ARI 0 = 15%). SEM showed a higher affinity between the adhesive and the irradiated laser base surface. Conclusions: Yd:YAG laser irradiation on bracket base increased SBS values, showing that bonding failure occurs at the enamel/adhesive interface. Laser-etched bracket base may be used instead of conventional bases in cases where higher adhesion is required, reducing bracket-bonding failure.


2014 ◽  
Vol 25 (6) ◽  
pp. 519-523 ◽  
Author(s):  
Erica Moreno Zanconato-Carvalho ◽  
João Felipe Bruniera ◽  
Natália Spadini de Faria ◽  
Vivian Colucci ◽  
Danielle Cristine Messias

Surface treatment of dentin before the bleaching procedure may affect its permeability and influence the bond strength of restorative materials. This study evaluated the influence of surface treatment before the bleaching on shear bond strength (SBT) of restorative materials to intracoronal dentin. Dentin slabs were subjected to surface treatment: no bleaching (control - CON), no surface treatment + bleaching (HP), 37% phosphoric acid + bleaching (PA) and Er:YAG laser + bleaching (L). After the bleaching procedure, specimens (n=10) were restored with: microhybrid composite resin (MH), flowable composite resin (F), and resin-modified glass-ionomer cement (RMGIC). The shear test was carried out. ANOVA and Tukey's test (α=0.05) showed significant difference for surface treatment and restorative materials (p<0.05). CON presented higher STB and was statistically different from HP (p<0.05). PA and L showed intermediate values and were statistically similar to CON and HP (p>0.05). STB for MH and F were higher than RMGIC (p<0.05), and did not differ from each other (p>0.05). The surface treatments with phosphoric acid and Er:YAG laser before the bleaching procedure provided shear bond strength at the same level of unbleached dentin and the composite resins presented superior bond strength to the intracoronal dentin.


2015 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Farnoosh Alizadeh ◽  
Mohammadreza Malekipour ◽  
Farzaneh Shirani ◽  
Shahram Amini

10.2341/05-13 ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 212-218 ◽  
Author(s):  
A. E. Souza-Gabriel ◽  
F. L. B. Amaral ◽  
J. D. Pécora ◽  
R. G. Palma-Dibb ◽  
S. A. M. Corona

Clinical Relevance Er:YAG laser adversely affected the adhesion of resin-modified glass ionomer cements to tooth structure and cannot be considered an alternative technique to the conventional turbine handpiece.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Ruo-qiao Han ◽  
Kai Yang ◽  
Ling-fei Ji ◽  
Chen Ling

Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets.Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy.Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p<0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket.Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.


Sign in / Sign up

Export Citation Format

Share Document