ceramic brackets
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 79)

H-INDEX

29
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 548
Author(s):  
Anca Mesaroș ◽  
Michaela Mesaroș ◽  
Smaranda Buduru

Background: Since fixed orthodontic treatment is widely spread and one of its inconveniences is bracket removal, as this affects enamel integrity as well as being a cause of discomfort to the patient, studies have searched for the most adequate bracket removal technique, many of them focusing on using laser-technology. Methods: Our review focused on articles published investigating methods of orthodontic bracket removal using laser technology in the last 30 years. Results: 19 relevant studies were taken into consideration after a thorough selection. Different types of laser devices, with specific settings and various testing conditions were tested and the investigators presented their pertinent conclusions. Conclusions: Most studies were performed using ceramic brackets and the best results in terms of prevention of enamel loss, temperature stability for the tooth as well as reduced chair time were obtained with Er:YAG lasers.


2022 ◽  
Vol 2022 ◽  
pp. 1-34
Author(s):  
Farhad Sobouti ◽  
Mehdi Aryana ◽  
Sepideh Dadgar ◽  
Reza Alizadeh Navaei ◽  
Vahid Rakhshan

Background. Despite the importance of identifying proper novel porcelain preparation techniques to improve bonding of orthodontic brackets to porcelain surfaces, and despite the highly controversial results on this subject, no systematic review or meta-analysis exists in this regard. Objective. To comparatively summarize the effects of all the available porcelain surface treatments on the shear bond strength (SBS) and adhesive remnant index (ARI) of orthodontic brackets (metal, ceramic, polycarbonate) bonded to feldspathic porcelain restorations. Search Methods. A search was conducted for articles published between January 1990 and February 2021 in PubMed, MeSH, Scopus, Web of Science, Cochrane, Google Scholar, and reference lists. Eligibility Criteria. English-language articles comparing SBS of feldspathic porcelain’s surface preparation methods for metal/ceramic/polycarbonate orthodontic brackets were included. Articles comparing silanes/bonding agents/primers without assessing roughening techniques were excluded. Data Analysis. Studies were summarized and risk of bias assessed. Each treatment’s SBS was compared with the 6 and 10 MPa recommended thresholds. Studies including comparator (HF [hydrofluoric acid] + silane + bonding) were candidates for meta-analysis. ARI scores were dichotomized. Fixed- and random-effects models were used and forest plots drawn. Egger regressions and/or funnel plots were used to assess publication biases. Results. Thirty-two studies were included (140 groups of SBS, 82 groups of ARI). Bond strengths of 21 studies were meta-analyzed (64 comparisons in 14 meta-analyses). ARIs of 12 articles were meta-analyzed (28 comparisons in 8 meta-analyses). Certain protocols provided bond strengths poorer than HF + silane + bonding: “abrasion + bonding, diamond bur + bonding, HF + bonding, Nd:YAG laser (1 W) + silane + bonding, CO2 laser (2 W/2 Hz) + silane + bonding, and phosphoric acid + silane + bonding.” Abrasion + HF + silane + bonding might act almost better than HF + silane + bonding. Abrasion + silane + bonding yields controversial results, being slightly (marginally significantly) better than HF + silane + bonding. Some protocols had controversial results with their overall effects being close to HF + silane + bonding: “Cojet + silane + bonding, diamond bur + silane + bonding, Er:YAG laser (1.6 W/20 Hz) + silane + bonding.” Few methods provided bond strengths similar to HF + silane + bonding without much controversy: “Nd:YAG laser (2 W) + silane + bonding” and “phosphoric acid + silane + bonding” (in ceramic brackets). ARIs were either similar to HF + silane + bonding or relatively skewed towards the “no resin on porcelain” end. The risk of bias was rather low. Limitations. All the found studies were in vitro and thus not easily translatable to clinical conditions. Many metasamples were small. Conclusions. The preparation methods HF + silane + bonding, abrasion + HF + silane + bonding, Nd:YAG (2 W) + silane + bonding, and phosphoric acid + silane + bonding (in ceramic brackets) might provide stronger bonds.


Author(s):  
Hasan Gündal ◽  
Burçak Kaya

During fixed orthodontic treatment, there is great possibility that the dental enamel could be damaged due to the process of debonding the bracket. Enamel cracks are one of the most common aspects that can develop or increase during debonding. This review aimed to conduct an examination of cracks in the enamel that occur both prior to and following metal or ceramic brackets being debonded.


Author(s):  
Hasan Gündal ◽  
Burçak Kaya

During fixed orthodontic treatment, there is great possibility that the dental enamel could be damaged due to the process of debonding the bracket. Enamel cracks are one of the most common aspects that can develop or increase during debonding. This review aimed to conduct an examination of cracks in the enamel that occur both prior to and following metal or ceramic brackets being debonded.


Author(s):  
Rebecca Jungbauer ◽  
Christian Kirschneck ◽  
Christian M. Hammer ◽  
Peter Proff ◽  
Daniel Edelhoff ◽  
...  

Abstract Objective The study aims to investigate the shear bond strength (SBS) between silicate ceramic restorations and ceramic brackets after different pretreatments and aging methods. Material and methods Leucite (LEU) and lithium disilicate (LiSi) specimens were pretreated with (i) 4% hydrofluoric acid + silane (HF), (ii) Monobond Etch&Prime (MEP), (iii) silicatization + silane (CoJet), and (iv) SiC grinder + silane (SiC). Molars etched (phosphoric acid) and conditioned acted as comparison group. SBS was measured after 24 h (distilled water, 37 °C), 500 × thermocycling (5/55 °C), and 90 days (distilled water, 37 °C). Data was analyzed using Shapiro–Wilk, Kruskal–Wallis with Dunn’s post hoc test and Bonferroni correction, Mann–Whitney U, and Chi2 test (p < 0.05). The adhesive remnant index (ARI) was determined. Results LEU pretreated with MEP showed lower SBS than pretreated with HF, CoJet, or SiC. LiSi pretreated with MEP resulted in lower initial SBS than pretreated with HF or SiC. After thermocycling, pretreatment using MEP led to lower SBS than with CoJet. Within LiSi group, after 90 days, the pretreatment using SiC resulted in lowest SBS values. After HF and MEP pretreatment, LEU showed lower initial SBS than LiSi. After 90 days of water storage, within specimens pretreated using CoJet or SiC showed LEU higher SBS than LiSi. Enamel presented higher or comparable SBS values to LEU and LiSi. With exception of MEP pretreatment, ARI 3 was predominantly observed, regardless the substrate, pretreatment, and aging level. Conclusions MEP pretreatment presented the lowest SBS values, regardless the silicate ceramic and aging level. Further research is necessary. Clinical relevance There is no need for intraoral application of HF for orthodontic treatment.


Author(s):  
Marta Gibas-Stanek ◽  
Małgorzata Pihut

The objective of this study was to compare the effects of the debonding of three different bracket types by means of three popular debonding methods. A total of 180 human third molars was divided into six groups, consisting of 20 teeth each. Three bracket types were bonded to the enamel (metal brackets with an integral base and a foil mesh base, and ceramic brackets) and three methods of bracket debonding were employed (bracket removal pliers, Weingart pliers, and Lift-Off Debonding Instrument). The samples were examined with scanning electron microscopy to assess the number of enamel cracks, measure the area of adhesive remaining on the enamel, and calculate the adhesive remnant index (ARI). There were no statistically significant differences between the groups in terms of the number of enamel cracks after bracket debonding. The amount of adhesive remaining on the teeth after the brackets were removed was significantly different between the groups. LODI and Weingart pliers are considered to be the safest methods of debonding brackets with an integral base, while LODI is the best tool for brackets with foil mesh. Bracket removal pliers are considered to be the preferred method for ceramic bracket debonding.


Author(s):  
Lutz Hodecker ◽  
Christoph Bourauel ◽  
Bert Braumann ◽  
Teresa Kruse ◽  
Hildegard Christ ◽  
...  

Abstract Objectives As part of orthodontic treatment, air polishing is routinely used for professional tooth cleaning. Thus, we investigated the effects of static powder polishing on sliding behaviour and surface quality of three different bracket materials (polymer, ceramic, metal), including a 3D-printed bracket. Methods Two bracket types of each material group were polished with an air-polishing device using sodium bicarbonate. Exposure times were set at 10, 20, and 60 s; the application distance was 5 mm. The force loss due to sliding resistance was tested with an orthodontic measurement and simulation system (OMSS) using a 0.016 inch × 0.022 inch stainless steel archwire. Untreated brackets served as control. Polishing effects and slot precision were evaluated using an optical digital and scanning electron microscope. Results Sliding behaviour and slot precision differed significantly between and within the groups. Prior to polishing, polymer brackets showed the least force loss, ceramic brackets the highest. With progressive polishing time, the resistance increased significantly with titanium brackets (26 to 37%) and decreased significantly with steel brackets (36 to 25%). Polymer brackets showed the smallest changes in force loss with respect to polishing duration. Slot precision showed the largest differences between material groups and was primarily manufacturer-dependent with hardly any changes due to the polishing time. Conclusion Powder polishing can positively or negatively affect the sliding properties of the bracket–archwire complex but is more dependent on the bracket–archwire material combination (i.e., manufacture-dependent slot precision). For titanium brackets, resistance only increased after 60 s of polishing. For ceramic brackets, effective reduction was observed after 10 s of polishing. Polymer brackets, including the 3D-printed brackets, showed better sliding properties than ceramic or metal brackets even after polishing for 60 s. Removal of plaque and dental calculus should lead to a noticeable improvement of the sliding properties and outweighs structural defects that may develop.


2021 ◽  
Vol 10 (38) ◽  
pp. 3430-3435
Author(s):  
PurvaVinod Kumar Dhannawat ◽  
Rizwan Gilani ◽  
Sunita S. Shrivastav ◽  
Ranjit H. Kamble ◽  
Shriya Prakash Murarka ◽  
...  

BACKGROUND The overall success of orthodontic treatment depends on both bonding as well as debonding techniques. The debonding procedure in orthodontics consists of removal of the attachments (brackets, bondable tubes & buttons) as well as all the adhesive resin from the teeth without causing any permanent damage and to restore the teeth to their pre-treatment stage. The demand for more aesthetic appliance led to the introduction of direct bonding techniques and has made banded attachments almost obsolete in present-day orthodontics. These procedures should not be painful to the patient or damaging to enamel and to obtain these objectives a correct debonding technique is of fundamental importance. The debonding procedure is as essential as bonding for the overall success of the orthodontic treatment. In an attempt to increase the bond strength of orthodontic appliances, we have neglected the fact that these appliances have to be debonded at the end of the treatment. In orthodontics debonding refers to debracketing that is removal of brackets, bondable tubes, buttons, and the adhesive used to bond as well as to restore the form and surface of tooth to its best possible original form by avoiding any type of iatrogenic damage. For achieving such objectives, an accurate debonding procedure is of utmost importance, else it could be needlessly lengthy and painful to the patient and damaging to the enamel. Many researches have been carried out to conclude the best techniques for debonding which will give an ideal finish for the tooth when treatment is terminated. The debonding procedure is mostly done by mechanical means, but its technique should be varied according to the bracket material and type. KEY WORDS Debonding Techniques, Metal Brackets, Ceramic Brackets, Enamel Damage


Sign in / Sign up

Export Citation Format

Share Document