scholarly journals Effect of enamel laser irradiation at different pulse settings on shear bond strength of orthodontic brackets

2013 ◽  
Vol 83 (6) ◽  
pp. 973-980 ◽  
Author(s):  
Serkan Sağır ◽  
Aslıhan Usumez ◽  
Ebru Ademci ◽  
Serdar Usumez

ABSTRACT Objective: To compare the effect of laser irradiation at two different pulse settings and acid etching on the shear bond strength (SBS) of orthodontic brackets to enamel. Materials and Methods: Thirty-six premolars were allocated to three groups (n  =  12): (1) 37% phosphoric acid etching, (2) erbium-doped yttrium aluminum garnet (Er:YAG) laser etching with medium-short pulse mode (MSP; 100 µs, 120 mj, 10 Hz, 1.2 W), and (3) Er:YAG laser etching with quantum-square pulse mode (QSP; 120 mj, 10 Hz, 1.2 W). Metallic brackets were bonded with Transbond XT. After photopolymerization, the samples were subjected to 5000 thermal cycles and debonded with a universal testing machine, and the SBS values were recorded. Surface morphology was evaluated with profilometric examination, scanning electron microscopy, and atomic force microscopy. The adhesive remnant index (ARI) was evaluated to assess the remaining adhesive. Results: The results of SBS testing were analyzed by one-way analysis of variance and Tukey honestly significant diffference tests. The mean SBS values of QSP and MSP laser groups were 11.80 ± 2.7 MPa and 10.10 ± 4.5 MPa, respectively, and the QSP group demonstrated significantly higher SBS (P < .01) than that of the acid-etched group (6.6 ± 2.4 MPa). No significant difference was observed between the SBS values of the two laser groups (P < .05). The difference between the ARI scores of the laser groups and the acid-etched group was statistically significant (P < .05). Conclusion: Laser etching at MSP and QSP modes present successful alternatives to acid etching; however, long-term clinical studies are required to verify clinical success.

2020 ◽  
Vol 11 (2) ◽  
pp. 144-152
Author(s):  
Hannaneh Ghadirian ◽  
Allahyar Geramy ◽  
Waleed Shallal ◽  
Soolmaz Heidari ◽  
Nooshin Noshiri ◽  
...  

Introduction: Remineralizing agents may be used for the treatment of white spot lesions (WSLs) prior to bracket bonding. However, some concerns exist regarding their possible interference with the etching and bonding process, negatively affecting the bond strength. This study aimed to assess the effect of two remineralizing agents with/without CO2 laser irradiation on the mechanical properties and shear bond strength (SBS) of demineralized enamel to the orthodontic bracket. Methods: This study evaluated 60 premolar teeth in 6 groups (n=10) as follows: (I) sound enamel, (II) demineralized enamel, (III) Nupro remineralizing agent (N), (IV) Nupro and CO2 laser (N/L), (V) Teethmate remineralizing agent (T), and (VI) Teethmate and CO2 laser (T/L). The remineralizing agents were applied to the enamel surfaces after their immersion in a demineralizing solution for 5 days. In groups IV and VI, the CO2 laser with a 10.6 μm wavelength, 10 ms pulse duration, a 50 Hz repetition rate, 0.3 mm beam diameter and 0.7 W power was irradiated after applying the remineralizing agents. Brackets were bonded to the enamel surfaces and SBS was measured by a universal testing machine. For the assessment of enamel microhardness, 20 sections of molar teeth were divided into 4 groups (n=5; N, N/L, T, T/L) and their microhardness was measured before demineralization, after demineralization and after remineralization. X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS) were carried out to assess the formation of hydroxyapatite. The atomic percentages of the C, O, P, Ca, Na, Si, F and Ca/P ratio were determined by EDS analysis. Results: The SBS significantly decreased in group II (P<0.001). There was no significant difference among the groups I, III, IV, V and VI (P<0.05). This finding was similar to the microhardness results, which showed an increase in microhardness after remineralization (P<0.05), with no difference among the remineralizing agents. The Ca/P ratio was the highest in the Nupro group and the lowest in the demineralized group. Conclusion: Remineralizing agents can significantly improve the microhardness and structural properties of demineralized enamel to a level similar to that of sound enamel with no adverse effect on SBS to orthodontic brackets.


2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2007 ◽  
Vol 77 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Güvenç Basaran ◽  
Törün Özer ◽  
Nükhet Berk ◽  
Orhan Hamamcı

Abstract Objective: To test the shear bond strength, surface characteristics, and fracture mode of brackets that are bonded to enamel etched with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser operated at different power outputs: 0.5 W, 1 W, and 2 W. Materials and Methods: Human premolars that had been extracted for orthodontic purposes were used. Enamel was etched with an Er,Cr:YSGG laser system operated at one of three power outputs or with orthophosphoric acid. Results: The shear bond strength associated with the 0.5-W laser irradiation was significantly less than the strengths obtained with the other irradiations. Both the 1-W and 2-W laser irradiations were capable of etching enamel in the same manner. This finding was confirmed by scanning electron microscopy examination. The evaluation of adhesive-remnant-index scores demonstrated no statistically significant difference in bond failure site among the groups, except for the 0.5-W laser–etched group. Generally, more adhesive was left on the enamel surface with laser irradiation than with acid etching. Conclusion: The mean shear bond strength and enamel surface etching obtained with an Er,Cr: YSGG laser (operated at 1 W or 2 W for 15 seconds) is comparable to that obtained with acid etching.


2019 ◽  
Vol 13 (2) ◽  
pp. 103-108
Author(s):  
Serdar Akarsu ◽  
Suleyman Kutalmış Buyuk ◽  
Ahmet Serkan Kucukekenci

Background. The temperature might affect the physical and mechanical properties of adhesive materials by reducing the polymerization rate. The present study aimed to evaluate the effect of temperature on the shear bond strength of metallic orthodontic brackets using various adhesive resin systems. Methods. Extracted human premolar teeth were randomly assigned to 8 groups (n=10) for bonding with the two available orthodontics adhesive systems (Transbond XT and NeoBond) at different temperatures: refrigeration temperature (4°C), room temperature (20°C), human body temperature (36°C) and high temperature (55°C). The shear bond strength (SBS) test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min. The adhesive remnant index (ARI) was assigned to the fractured orthodontic brackets. Data were analyzed with one-way ANOVA, post hoc Tukey tests and independent t-test. Results. Transbond XT exhibited higher SBS values compared to Neobond at all the tested temperatures; however, a statistically significant difference was not observed (P>0.05). The SBS results were minimum at 4°C and maximum at 36°C in both the adhesive groups (P<0.05). Conclusion. Pre-heating orthodontic adhesives up to the body temperature prior to bonding the brackets in orthodontic treatment increased the bond strength of orthodontic brackets.


2001 ◽  
Vol 25 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Azza El-Housseiny ◽  
Hana Jamjoum

This study was undertaken to evaluate the effect of caries detector dyes and/or cavity cleanser on composite bonding and etching patterns of enamel and dentin. One hundred and eight non-carious premolars were divided into six groups according to the enamel and dentin pretreatment investigated. The different pretreatment were as follows: Group I: teeth with prophylaxis only, Group II: Sable seek caries detector dye,Groups III: chlorhexidine cavity cleanser,Group IV: the caries detectors dye followed by prophylaxis, Group V: the cavity cleanser followed by the caries detector dye, and Group IV: Snoop caries detector dye. The shear bond strength of composite resin bonded to enamel and dentin was evaluated by the Instron Universal testing machine while, the topographic details of enamel and dentin were examined by the SEM following the different pretreatment and acid etching. Results of the shear bond strength showed no statistically significant difference among the six groups, with no substantial differences in SEM results. It is concluded that using the caries detector dyes and/or chlorhexidine cavity cleanser before acid etching does not significantly affect composite bonding to enamel and dentin.


2009 ◽  
Vol 79 (5) ◽  
pp. 945-950 ◽  
Author(s):  
Ding Xiaojun ◽  
Lu Jing ◽  
Guo Xuehua ◽  
Ruan Hong ◽  
Yu Youcheng ◽  
...  

Abstract Objective: To evaluate the effect of casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) paste on shear bond strength and debonding failure modes of orthodontic brackets. Materials and Methods: Freshly extracted premolars were randomly divided into four groups (n =18) as follows: in groups 1 and 3, the enamel was treated with a solution of CPP-ACP dissolved in artificial saliva; groups 2 and 4 served as controls, and the enamel was treated with artificial saliva. After conventional acid etching, in groups 1 and 2, brackets were bonded using a light-cured bonding system (Blugloo); while in groups 3 and 4, brackets were bonded using a conventional bonding system (Unite Bonding Adhesive). Bonded specimens were subjected to thermal cycling for 1000 cycles before debonding procedures. After debonding, teeth and brackets were examined under a stereomicroscope at 10× magnification to determine whether any adhesive remained, in accordance with the adhesive remnant index. The acid-etched enamel surfaces were also observed using scanning electron microscopy after treatment with and without CPP-ACP paste. Results: The shear bond strengths of group 1 were significantly higher than those seen in group 2 (P &lt; .01). There was no significant difference in the shear bond strengths of groups 3 and 4 (P &gt; .05). Scanning electron microscopic observation showed that the pretreated enamel surface was rougher than that of the control surface after acid etching. Conclusion: The use of CPP-ACP can be considered as an alternative prophylactic application in orthodontic practice since it did not compromise bracket bond strength.


2021 ◽  
pp. 030157422110044
Author(s):  
I Ranganayakulu ◽  
D Praveen Kumar Varma ◽  
Padma Priya CV ◽  
RSVM Raghu Ram ◽  
K Anand Viswanadh ◽  
...  

Objectives: To evaluate and compare the effect of adhesion boosters on shear bond strength (SBS) of orthodontic brackets on bleached teeth. Materials and Methods: A sample of 90 extracted maxillary premolars was equally divided into 2 groups of bleached and non-bleached teeth. Twenty-two percent carbamide peroxide gel was used as an agent for bleaching. Each group was further divided equally into 3 subgroups depending on the type of adhesive booster used (Enhance LC, All-bond 2, and no adhesive booster [control]) and maxillary premolars brackets were bonded. Debonding was done with a universal testing machine, and the SBS was recorded. Results: The SBS of non-bleached teeth was highest for All-bond 2 (14.78 ± 2.47 MPa) followed by Enhance LC (13.15 ± 3.49 MPa) and control (10.30 ± 1.06 MPa). The SBS of bleached teeth was highest for All bond 2 (12.23 ± 1.41 MPa) followed by Enhance LC (11.76 ± 1.71 MPa) and control (9.63 ± 1.06 MPa). All subgroups showed a significant difference in SBS (P = .000) on bleached and non-bleached teeth. The SBS showed a significant difference between the bleached and non-bleached teeth in All-bond 2 group (P = .019). Conclusion: Adhesive boosters increased the SBS of both bleached and non-bleached teeth significantly. Among the two adhesive boosters used, All-bond 2 showed more SBS values.


2018 ◽  
Vol 12 (03) ◽  
pp. 380-385 ◽  
Author(s):  
Abtesam Aljdaimi ◽  
Hugh Devlin ◽  
Mark Dickinson

ABSTRACTObjectives: The purpose of this study was to determine if Er: YAG laser etching improves the shear bond strength (SBS) of Biodentin™ and GC Fuji IX® to dentine. Materials and Methods: Forty human dentine specimens were standardized and embedded in stone. The specimens were randomized into four groups (n = 10). Twenty samples were treated with the Er: YAG laser radiation and 10 of these restored with GC Fuji IX® and 10 with Biodentine™. The remaining 20 specimens acted as controls (no laser treatment); 10 were restored with GC Fuji IX® and 10 with Biodentin™. All samples were then stored in an incubator at 37.5°C and 100% humidity for 7 days. The SBS was determined using a Zwick universal testing machine. A two-way analysis of variance test was used to evaluate the statistical difference in SBS between the groups. An independent sample t-test was used to determine the statistical significance of differences between control and lased groups within the same material. Results: A highly statistically significant difference in SBS was found with the laser treatment (P = 0.0001) and material (i.e., Biodentin™ or Fuji IX® (P = 0.0001). The GC Fuji IX® group recorded the highest mean SBS required to dislodge the material from the laser-treated dentine surface (1.77 ± 0.22 Mega-Pascal [MPa]). The mean SBS of Biodentin™ to dentine following the laser radiation (1.12 ± 0.16 MPa) was significantly greater compared to the nonlased dentine (0.53 ± 0.09). Pearson Chi-square test indicated a nonsignificant relation between shear strength and mode of failure (P = 0.467). Conclusion: Laser etching of the dentine surfaces yielded a significant increase in the bond strength for both GC Fuji IX® and Biodentin™. The SBS of Biodentin™ to dentine is greater than with conventional glass ionomer (Fuji IX®).


2015 ◽  
Vol 39 (4) ◽  
pp. 348-357 ◽  
Author(s):  
RM Agarwal ◽  
R Yeluri ◽  
C Singh ◽  
AK Munshi

Objective: To suggest Papacarie® as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. Study design: One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie® for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie® for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie® and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p &lt; 0.05). Results: It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Conclusion: Papacarie® or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.


Sign in / Sign up

Export Citation Format

Share Document