pulse mode
Recently Published Documents


TOTAL DOCUMENTS

724
(FIVE YEARS 140)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 168 ◽  
pp. 108875
Author(s):  
V.K. Tskhe ◽  
N.Ye. Mukhamedov ◽  
V.A. Gaydaychuk ◽  
Ye.V. Kozlovskiy ◽  
A.V. Gradoboev

2022 ◽  
Vol 123 ◽  
pp. 111939
Author(s):  
Zhanqiang Hui ◽  
Yuanhong Wang ◽  
Niping Shen ◽  
Dongdong Han ◽  
Xiaohui Li ◽  
...  

2022 ◽  
Vol 92 (2) ◽  
pp. 297
Author(s):  
Ю.П. Куропаткин ◽  
В.И. Нижегородцев ◽  
И.Н. Романов ◽  
К.В. Савченко ◽  
В.Д. Селемир ◽  
...  

The paper concerns the mobile accelerator based on the ironless pulsed betaron. The accelerator is aimed to radiograph dynamic objects with a large optical thickness. It has a possibility to obtain up to three γ-pulses in one cycle of the acceleration. The accelerator operation description and results of its testing powering in a single-pulse mode are provided. The estimated boundary energy of an electron beam is equal to 60 MeV at the capacitance value of 1.8 mF of the storage of the betatron electromagnet pulsed power system. The thickness of the lead test object examined with γ-rays is 140 mm at 4 m from the tantalum target. The full width of the output γ-pulse at half maximum is equal to 120 ns. The dimension of the radiation source is 3×6 mm. The application of these accelerators within the radiographic complex will allow increasing the investigation efficiency due to the optimization of the hydrodynamic experiments geometry and the cost reduction.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 288
Author(s):  
Guzel Ziyatdinova ◽  
Anastasiya Zhupanova ◽  
Rustam Davletshin

Natural phenolic antioxidants are one of the widely studied compounds in life sciences due to their important role in oxidative stress prevention and repair. The structural similarity of these antioxidants and their simultaneous presence in the plant samples stipulate the development of methods for their quantification. The current work deals with the simultaneous determination of vanillin and its bioprecursor ferulic acid using a voltammetric sensor for the first time. A sensor based on the layer-by-layer deposition of the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNTs) and electropolymerized bromocresol purple has been developed for this purpose. The best response of co-existing target analytes was registered for the polymer obtained from the 25 µM dye by 10-fold potential cycling from 0.0 to 1.2 V with the scan rate of 100 mV s−1 in 0.1 M phosphate buffer (PB), pH 7.0. Scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) confirmed the effectivity of the sensor developed. The linear dynamic ranges of 0.10–5.0 µM and 5.0–25 µM for both analytes with the detection limits of 72 nM and 64 nM for ferulic acid and vanillin, respectively, were achieved in differential pulse mode. The sensor was applied for the analysis of vanilla extracts.


Author(s):  
Francesc Caballero-Lucas ◽  
Kotaro Obata ◽  
Koji Sugioka

Abstract Ultrashort laser pulses confine material processing to the laser-irradiated area by suppressing heat diffusion, resulting in precise ablation in diverse materials. However, challenges occur when high speed material removal and higher ablation efficiencies are required. Ultrafast burst mode laser ablation has been proposed as a successful method to overcome these limitations. Following this approach, we studied the influence of combining GHz bursts in MHz bursts, known as BiBurst mode, on ablation efficiency of silicon. BiBurst mode used in this study consists of multiple bursts happening at a repetition rate of 64 MHz, each of which contains multiple pulses with a repetition rate of 5 GHz. The obtained results show differences between BiBurst mode and conventional single pulse mode laser ablation, with a remarkable increase in ablation efficiency for the BiBurst mode, which under optimal conditions can ablate a volume 4.5 times larger than the single pulse mode ablation when delivering the same total energy in the process.


2021 ◽  
Vol 32 (4) ◽  
pp. 102-116
Author(s):  
Lukas W. Snyman ◽  
Glen Maeko

South Africa is, due its specific latitude location in the southern hemisphere, exposed to high solar irradiation levels. Black thermal absorbers have a high absorbance for solar incident radiation, while commercial photovoltaic technology only converts about 10% of energy available in the solar spectrum. In this article, low-cost Peltier conversion cells, that are normally used for cooling purposes, and that are freely available in supply stores in South Africa, were identified as suitable conversion cells for converting thermal energy into electricity. Two prototypes of thermal-to-electricity energy conversion systems were subsequently designed and developed. Particularly, advanced pulse mode DC- to- DC conversion technology, a special electronic control system, was developed, that could extract high amounts of electrical energy from the cells and could store the energy in standard storage batteries. A 3 W and a 30 W output continuous conversion capacity system were developed. A power conversion of up to 2 W capacity per individual cell was achieved. The systems used no movable parts, and the lifespan of the systems is projected to be at least twenty years. Cost and viability analyses of the systems were performed and the results were compared to existing solar photovoltaic energy conversion systems. Combining the 30 W capacity system with a black body and reflector plate absorber system revealed a cost structure of only ZAR 0.8 per kWh, as compared with a derived ZAR 3 per kWh for a combined photovoltaic and solar geyser combination, as calculated for a ten-year term. The technology as developed is suitable to be incorporated in South African households and rural Africa applications.


2021 ◽  
Author(s):  
Jongyoon Joo ◽  
Tae Shik Kim ◽  
Benjamin J. Vakoc ◽  
Wang-Yuhl Oh
Keyword(s):  

Author(s):  
M T Miles ◽  
R M Shannon ◽  
M Bailes ◽  
D J Reardon ◽  
S Buchner ◽  
...  

Abstract We present baseband radio observations of the millisecond pulsar J1909−3744, the most precisely timed pulsar, using the MeerKAT telescope as part of the MeerTime pulsar timing array campaign. During a particularly bright scintillation event the pulsar showed strong evidence of pulse mode changing, among the first millisecond pulsars and the shortest duty cycle millisecond pulsar to do so. Two modes appear to be present, with the weak (lower signal-to-noise ratio) mode arriving 9.26 ±3.94 μs earlier than the strong counterpart. Further, we present a new value of the jitter noise for this pulsar of 8.20 ± 0.14 ns in one hour, finding it to be consistent with previous measurements taken with the MeerKAT (9 ± 3 ns) and Parkes (8.6 ± 0.8 ns) telescopes, but inconsistent with the previously most precise measurement taken with the Green Bank telescope (14 ± 0.5 ns). Timing analysis on the individual modes is carried out for this pulsar, and we find an approximate $10\%$ improvement in the timing precision is achievable through timing the strong mode only as opposed to the full sample of pulses. By forming a model of the average pulse from templates of the two modes, we time them simultaneously and demonstrate that this timing improvement can also be achieved in regular timing observations. We discuss the impact an improvement of this degree on this pulsar would have on searches for the stochastic gravitational wave background, as well as the impact of a similar improvement on all MeerTime PTA pulsars.


Sign in / Sign up

Export Citation Format

Share Document