A Median-Unbiased Estimator of the Characteristic Exponent of a Symmetric Stable Distribution

Statistics ◽  
2000 ◽  
Vol 34 (4) ◽  
pp. 353-355
Author(s):  
Ryszard Zieliński
2019 ◽  
Vol 12 (4) ◽  
pp. 171
Author(s):  
Ashis SenGupta ◽  
Moumita Roy

The aim of this article is to obtain a simple and efficient estimator of the index parameter of symmetric stable distribution that holds universally, i.e., over the entire range of the parameter. We appeal to directional statistics on the classical result on wrapping of a distribution in obtaining the wrapped stable family of distributions. The performance of the estimator obtained is better than the existing estimators in the literature in terms of both consistency and efficiency. The estimator is applied to model some real life financial datasets. A mixture of normal and Cauchy distributions is compared with the stable family of distributions when the estimate of the parameter α lies between 1 and 2. A similar approach can be adopted when α (or its estimate) belongs to (0.5,1). In this case, one may compare with a mixture of Laplace and Cauchy distributions. A new measure of goodness of fit is proposed for the above family of distributions.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


2019 ◽  
Vol 283 ◽  
pp. 08002
Author(s):  
Guoli Song ◽  
Xinyi Guo ◽  
Li Ma

In view of the non-Gaussian of ocean ambient noise, the  stable distribution is applied to the statistical modelling. Firstly, the one-to-one correspondence between the four parameters of stable distribution and the sample mean, variance, skewness and kurtosis are established according to physical meaning. Then, numerical simulations are conducted to analyze the suitability of stable distribution for non-Gaussian ambient noise. In the case of white noise interference, noise is divided into Gaussian state, leptokurtic, and platykurtic separately. The parameters of stable distribution are estimated by the sample quantile and characteristic function method jointly. The simulation results show that, in the Gaussian state,  stable distribution is equivalent to normal distribution. As for leptokurtic distribution, stable distribution is much better than normal distribution, indicating absolute predominance in impulse-like data modeling. But it is not adaptive for low kurtosis state because its characteristic exponent can’t be bigger than two. Finally, the result is verified by ambient noise collected in three environmental conditions, such as quiet ambient noise, airgun interference noise and ship noise. In all three cases,  stable distribution shows good adaptability and accuracy, especially for the airgun dataset it is far superior to normal distribution.


1971 ◽  
Vol 3 (02) ◽  
pp. 404-425
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution functionF, assumeFis in the domain of attraction of a stable distribution with characteristic exponent α, 0 &lt; α ≦ 2, and let {Bn} be normalizing coefficients forF. Let us denoteXn+=XnI[Xn&gt; 0]andXn−= −XnI[Xn&lt;0], so thatXn=Xn+-Xn−. LetF+andF−denote the distribution functions ofX1+andX1−respectively, and letSn(+)=X1++ · · · +Xn+,Sn(-)=X1−+ · · · +Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+)+an,Bn-1Sn(-)+bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α &lt; 2 and when α = 2. When α &lt; 2, there always exist such sequences so that the above is true, and in this case bothUandVare stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 &lt; ∫x2dF(x) &lt; ∞, then there always exist such sequences such that the above convergence takes place; bothUandVare normal (possibly one is a constant), and if neither is a constant, thenUandVarenotindependent. If α = 2 and ∫x2dF(x) = ∞, then at least one ofF+,F−is in the domain of partial attraction of the normal distribution, and a modified statement on the independence ofUandVholds. Various specialized results are obtained for α = 2.


1971 ◽  
Vol 3 (2) ◽  
pp. 404-425 ◽  
Author(s):  
Howard G. Tucker

The aim of this study is an investigation of the joint limiting distribution of the sequence of partial sums of the positive parts and negative parts of a sequence of independent identically distributed random variables. In particular, let {Xn} be a sequence of independent identically distributed random variables with common distribution function F, assume F is in the domain of attraction of a stable distribution with characteristic exponent α, 0 < α ≦ 2, and let {Bn} be normalizing coefficients for F. Let us denote Xn+ = XnI[Xn > 0] and Xn− = − XnI[Xn<0], so that Xn = Xn+ - Xn−. Let F+ and F− denote the distribution functions of X1+ and X1− respectively, and let Sn(+) = X1+ + · · · + Xn+, Sn(-) = X1− + · · · + Xn−. The problem considered here is to find under what conditions there exist sequences of real numbers {an} and {bn} such that the joint distribution of (Bn-1Sn(+) + an, Bn-1Sn(-) + bn) converges to that of two independent random variables (U, V). As might be expected, different results are obtained when α < 2 and when α = 2. When α < 2, there always exist such sequences so that the above is true, and in this case both U and V are stable with characteristic exponent a, or one has such a stable distribution and the other is constant. When α = 2, and if 0 < ∫ x2dF(x) < ∞, then there always exist such sequences such that the above convergence takes place; both U and V are normal (possibly one is a constant), and if neither is a constant, then U and V are not independent. If α = 2 and ∫ x2dF(x) = ∞, then at least one of F+, F− is in the domain of partial attraction of the normal distribution, and a modified statement on the independence of U and V holds. Various specialized results are obtained for α = 2.


2008 ◽  
Vol 85 (1) ◽  
pp. 81-86 ◽  
Author(s):  
K. FARAHMAND

AbstractWe consider a random algebraic polynomial of the form Pn,θ,α(t)=θ0ξ0+θ1ξ1t+⋯+θnξntn, where ξk, k=0,1,2,…,n have identical symmetric stable distribution with index α, 0<α≤2. First, for a general form of θk,α≡θk we derive the expected number of real zeros of Pn,θ,α(t). We then show that our results can be used for special choices of θk. In particular, we obtain the above expected number of zeros when $\theta _k={n\choose k}^{1/2}$. The latter generate a polynomial with binomial elements which has recently been of significant interest and has previously been studied only for Gaussian distributed coefficients. We see the effect of α on increasing the expected number of zeros compared with the special case of Gaussian coefficients.


Sign in / Sign up

Export Citation Format

Share Document