scholarly journals An Universal, Simple, Circular Statistics-Based Estimator of α for Symmetric Stable Family

2019 ◽  
Vol 12 (4) ◽  
pp. 171
Author(s):  
Ashis SenGupta ◽  
Moumita Roy

The aim of this article is to obtain a simple and efficient estimator of the index parameter of symmetric stable distribution that holds universally, i.e., over the entire range of the parameter. We appeal to directional statistics on the classical result on wrapping of a distribution in obtaining the wrapped stable family of distributions. The performance of the estimator obtained is better than the existing estimators in the literature in terms of both consistency and efficiency. The estimator is applied to model some real life financial datasets. A mixture of normal and Cauchy distributions is compared with the stable family of distributions when the estimate of the parameter α lies between 1 and 2. A similar approach can be adopted when α (or its estimate) belongs to (0.5,1). In this case, one may compare with a mixture of Laplace and Cauchy distributions. A new measure of goodness of fit is proposed for the above family of distributions.

1997 ◽  
Vol 3 (2) ◽  
pp. 411-482 ◽  
Author(s):  
G.S. Finkelstein

ABSTRACTThe paper examines the suitability of the stable family of distributions with the Maturity Guarantees Working Party's stochastic investment model (Ford et al, 1980). It then examines the effect of replacing the Gaussian assumption made by the working party with a more general stable distribution. It also explains how the appropriate stable distribution can be fitted.


Author(s):  
Mohadese Akbarinasab ◽  
Ali Reza Arabpour ◽  
Abbas Mahdavi

Background & Aim: There are various data associated with any events in the world which need to be analyzed. In response to this, many researchers attempt to find appropriate methods that could better fit these data using new models. One of these methods is to introduce new distributions which could better describe available data. During last few years, new distributions have been extended based on existing well-known distributions. Usually, new distributions have more parameters than existing ones. This addition of parameter(s) has been proved useful in exploring tail properties and also for improving the goodness-of-fit of the family under study. Methods & Materials: A new family of distributions is introduced by using truncated log-logistic distribution. Some statistical and reliability properties of the new family are derived. Results: Four special lifetime models of the new family are investigated. We estimate the parameters by maximum likelihood method. The obtained results are validated using a real dataset and it is shown that the new distributions provide a better fit than some other known distributions. Conclusion: We have provided four new distributions. The flexibility of the proposed distributions and increased range of skewness was able to fit and capture features in one real dataset much better than some competitor distributions


Author(s):  
Omolola Dorcas Atanda ◽  
Tajan Mashingil Mabur ◽  
Gerald Ikechukwu Onwuka

This article presents a comprehensive study of an odd Lindley-Gompertz distribution which has already been proposed in the literature but without any properties. The present study unlike the previous one has considered the derivation of several properties of the odd Lindley-Gompertz distribution with their graphical representations and discussions which has not been done in the first proposition of the distribution.  The study looks at properties such as survival (or reliability) function, the hazard function, the cumulative hazard function, the reverse hazard function, the odds function, quantile function, moments, moment generating function, characteristic function, cumulant generating function, distribution of order statistics and maximum likelihood estimation of the distribution’s parameters none of which was treated by the previous author of the model. An illustration to evaluate the goodness-of-fit of the odd Lindley-Gompertz distribution has also been done using two real life datasets and the results show that the model fits the datasets better than the five other distributions considered in this present study.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Adejuyigbe O. Fajemisin ◽  
Laura Climent ◽  
Steven D. Prestwich

AbstractThis paper presents a new class of multiple-follower bilevel problems and a heuristic approach to solving them. In this new class of problems, the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. We show that current approaches for solving multiple-follower problems are unsuitable for our new class of problems and instead we propose a novel analytics-based heuristic decomposition approach. This approach uses Monte Carlo simulation and k-medoids clustering to reduce the bilevel problem to a single level, which can then be solved using integer programming techniques. The examples presented show that our approach produces better solutions and scales up better than the other approaches in the literature. Furthermore, for large problems, we combine our approach with the use of self-organising maps in place of k-medoids clustering, which significantly reduces the clustering times. Finally, we apply our approach to a real-life cutting stock problem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel problem and solved using our approach.


Paleobiology ◽  
2002 ◽  
Vol 28 (3) ◽  
pp. 343-363 ◽  
Author(s):  
David C. Lees ◽  
Richard A. Fortey ◽  
L. Robin M. Cocks

Despite substantial advances in plate tectonic modeling in the last three decades, the postulated position of terranes in the Paleozoic has seldom been validated by faunal data. Fewer studies still have attempted a quantitative approach to distance based on explicit data sets. As a test case, we examine the position of Avalonia in the Ordovician (Arenig, Llanvirn, early Caradoc, and Ashgill) to mid-Silurian (Wenlock) with respect to Laurentia, Baltica, and West Gondwana. Using synoptic lists of 623 trilobite genera and 622 brachiopod genera for these four plates, summarized as Venn diagrams, we have devised proportional indices of mean endemism (ME, normalized by individual plate faunas to eliminate area biogeographic effects) and complementarity (C) for objective paleobiogeographic comparisons. These can discriminate the relative position of Avalonia by assessing the optimal arrangement of inter-centroid distances (measured as great circles) between relevant pairs of continental masses. The proportional indices are used to estimate the “goodness-of-fit” of the faunal data to two widely used dynamic plate tectonic models for these time slices, those of Smith and Rush (1998) and Ross and Scotese (1997). Our faunal data are more consistent with the latter model, which we use to suggest relationships between faunal indices for the five time slices and new rescaled inter-centroid distances between all six plate pairs. We have examined linear and exponential models in relation to continental separation for these indices. For our generic data, the linear model fits distinctly better overall. The fits of indices generated by using independent trilobite and brachiopod lists are mostly similar to each other at each time slice and for a given plate, reflecting a common biogeographic signal; however, the indices vary across the time slices. Combining groups into the same matrix in a “total evidence” analysis performs better still as a measure of distance for mean endemism in the “Scotese” plate model. Four-plate mean endemism performs much better than complementarity as an indicator of pairwise distance for either plate model in the test case.


2020 ◽  
Vol 22 (2) ◽  
pp. 137
Author(s):  
Yudistira Permana ◽  
Giovanni Van Empel ◽  
Rimawan Pradiptyo

This paper extends the analysis of the data from the experiment undertaken by Pradiptyo et al. (2015), to help explain the subjects’ behaviour when making decisions under risk. This study specifically investigates the relative empirical performance of the two general models of the stochastic choice: the random utility model (RUM) and the random preference model (RPM) where this paper specifies these models using two preference functionals, expected utility (EU) and rank-dependent expected utility (RDEU). The parameters are estimated in each model using a maximum likelihood technique and run a horse-race using the goodness-of-fit between the models. The results show that the RUM better explains the subjects’ behaviour in the experiment. Additionally, the RDEU fits better than the EU for modelling the stochastic choice. 


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258512
Author(s):  
Phillip Oluwatobi Awodutire ◽  
Oluwafemi Samson Balogun ◽  
Akintayo Kehinde Olapade ◽  
Ethelbert Chinaka Nduka

In this work, a new family of distributions, which extends the Beta transmuted family, was obtained, called the Modified Beta Transmuted Family of distribution. This derived family has the Beta Family of Distribution and the Transmuted family of distribution as subfamilies. The Modified beta transmuted frechet, modified beta transmuted exponential, modified beta transmuted gompertz and modified beta transmuted lindley were obtained as special cases. The analytical expressions were studied for some statistical properties of the derived family of distribution which includes the moments, moments generating function and order statistics. The estimates of the parameters of the family were obtained using the maximum likelihood estimation method. Using the exponential distribution as a baseline for the family distribution, the resulting distribution (modified beta transmuted exponential distribution) was studied and its properties. The modified beta transmuted exponential distribution was applied to a real life time data to assess its flexibility in which the results shows a better fit when compared to some competitive models.


Author(s):  
Barinaadaa John Nwikpe ◽  
Isaac Didi Essi

A new two-parameter continuous distribution called the Two-Parameter Nwikpe (TPAN) distribution is derived in this paper. The new distribution is a mixture of gamma and exponential distributions. A few statistical properties of the new probability distribution have been derived. The shape of its density for different values of the parameters has also been established.  The first four crude moments, the second and third moments about the mean of the new distribution were derived using the method of moment generating function. Other statistical properties derived include; the distribution of order statistics, coefficient of variation and coefficient of skewness. The parameters of the new distribution were estimated using maximum likelihood method. The flexibility of the Two-Parameter Nwikpe (TPAN) distribution was shown by fitting the distribution to three real life data sets. The goodness of fit shows that the new distribution outperforms the one parameter exponential, Shanker and Amarendra distributions for the data sets used for this study.


Author(s):  
Barinaadaa John Nwikpe

A new sole parameter probability distribution named the Tornumonkpe distribution has been derived in this paper. The new model is a blend of gamma (2,  and gamma(3  distributions. The shape of its density for different values of the parameter has been shown.  The mathematical expression for the moment generating function, the first three raw moments, the second and third moments about the mean, the distribution of order statistics, coefficient of variation and coefficient of skewness has been given. The parameter of the new distribution was estimated using the method of maximum likelihood. The goodness of fit of the Tornumonkpe distribution was established by fitting the distribution to three real life data sets. Using -2lnL, Bayesian Information Criterion (BIC), and Akaike Information Criterion(AIC) as criterial for selecting the best fitting model, it was revealed that the new distribution outperforms the one parameter exponential, Shanker and Amarendra distributions for the data sets used.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


Sign in / Sign up

Export Citation Format

Share Document