scholarly journals Spatially explicit estimation of domestic water use in the arid region of northwestern China: 1985–2009

2013 ◽  
Vol 58 (1) ◽  
pp. 162-176 ◽  
Author(s):  
Bin Guo ◽  
Yaning Chen ◽  
Yanjun Shen ◽  
Weihong Li ◽  
Chengben Wu
Waterlines ◽  
2003 ◽  
Vol 22 (1) ◽  
pp. 22-25 ◽  
Author(s):  
John Thompson ◽  
Ina Porras ◽  
Munguti Katui-Katua ◽  
Mark Mujwahuzi ◽  
James Tumwine
Keyword(s):  

2013 ◽  
Vol 409-410 ◽  
pp. 79-82 ◽  
Author(s):  
Ying Qin Chen ◽  
Xian Feng Huang

Due to the rich resources of urban rainwater and transit flood in coastal areas, rational utilization of rainfall and flood water resources can improve the sustainable utilization, to better serve the coastal development. In this paper, the available quantity of water rainfall and flood water resources in coastal are distributed to domestic water, industrial water, agricultural water and ecologic environmental water. Water price method is used to calculate domestic water efficiency. Energy synthesis is used to calculate the industrial and agricultural water-use efficiency. Ecologic environmental water-use efficiency-sharing coefficient method is used to calculate the ecologic environmental water-use efficiency. Finally, taking Lianyungang City, a Jiangsu coastal city as an example to analyze the rainfall and flood water resources utilization efficiency. The results provide reference to the research for Chinas plain area rainfall and flood water resources efficiency analysis.


Author(s):  
Natalia Mikosch ◽  
Markus Berger ◽  
Elena Huber ◽  
Matthias Finkbeiner

Abstract Purpose The water footprint (WF) method is widely applied to quantify water use along the life cycle of products and organizations and to evaluate the resulting impacts on human health. This study analyzes the cause-effect chains for the human health damage related to the water use on a local scale in the Province Punjab of Pakistan, evaluates their consistency with existing WF models, and provides recommendations for future model development. Method Locally occurring cause-effect chains are analyzed based on site observations in Punjab and a literature review. Then, existing WF models are compared to the findings in the study area including their comprehensiveness (covered cause-effect chains), relevance (contribution of the modeled cause-effect chain to the total health damage), and representativeness (correspondence with the local cause-effect chain). Finally, recommendations for the development of new characterization models describing the local cause-effect chains are provided. Results and discussion The cause-effect chains for the agricultural water deprivation include malnutrition due to reduced food availability and income loss as well as diseases resulting from the use of wastewater for irrigation, out of which only the first one is addressed by existing WF models. The cause-effect chain for the infectious diseases due to domestic water deprivation is associated primarily with the absence of water supply systems, while the linkage to the water consumption of a product system was not identified. The cause-effect chains related to the water pollution include the exposure via agricultural products, fish, and drinking water, all of which are reflected in existing impact assessment models. Including the groundwater compartment may increase the relevance of the model for the study area. Conclusions Most cause-effect chains identified on the local scale are consistent with existing WF models. Modeling currently missing cause-effect chains for the impacts related to the income loss and wastewater usage for irrigation can enhance the assessment of the human health damage in water footprinting.


1963 ◽  
Vol 55 (4) ◽  
pp. 451-455
Author(s):  
G. M. Quraishi
Keyword(s):  

2017 ◽  
Vol 196 ◽  
pp. 108-118 ◽  
Author(s):  
Huaijun Wang ◽  
Yingping Pan ◽  
Yaning Chen ◽  
Zhengwei Ye

2013 ◽  
Vol 23 (3) ◽  
pp. 286-300 ◽  
Author(s):  
Huaijun Wang ◽  
Yaning Chen ◽  
Weihong Li ◽  
Haijun Deng

Sign in / Sign up

Export Citation Format

Share Document