Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China

2015 ◽  
Vol 161 ◽  
pp. 77-85 ◽  
Author(s):  
Zikui Wang ◽  
Pute Wu ◽  
Xining Zhao ◽  
Ying Gao ◽  
Xiaoli Chen
2013 ◽  
Vol 58 (1) ◽  
pp. 162-176 ◽  
Author(s):  
Bin Guo ◽  
Yaning Chen ◽  
Yanjun Shen ◽  
Weihong Li ◽  
Chengben Wu

2009 ◽  
Vol 111 (1-2) ◽  
pp. 65-73 ◽  
Author(s):  
Yang Gao ◽  
Aiwang Duan ◽  
Jingsheng Sun ◽  
Fusheng Li ◽  
Zugui Liu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3169
Author(s):  
Chenggong Xuan ◽  
Risheng Ding ◽  
Jie Shao ◽  
Yanshuo Liu

To examine evapotranspiration (ETc), soil evaporation (Es), and transpiration (Tr), and partitioning of ETc, a two-year field experiment was carried out in a maize field with drip irrigation under mulch in an arid region of northwestern China in 2017 and 2018. In the experiment we designed two treatments with full irrigation (T1) and growth stage-based strategic regulated deficit irrigation (T2). The applied irrigation of T2 was 40% of the T1 during both late vegetative and reproductive growth stages. Based on the measurements of soil water content (SWC) and Tr, a dual crop coefficient model (SIMDualKc) was calibrated and validated, and daily ETc, Es, and Tr were estimated. The model can simulate well the dynamic variations of SWC and Tr. The calibrated basic crop coefficient at the initial, mid-season, and end growth stages was 0.2, 1.15, and 0.75, respectively. The ETc was 507.9 and 519.1 mm for the T1 treatment, and 428.9 and 430.9 mm for the T2 treatment. The ratios of Tr to ETc were higher for the two treatments, ~90%, for two years. Collectively, both drip irrigation under mulch and strategic deficit irrigation after canopy covering of the ground can significantly reduce the ineffective proportion of ETc and Es.


2021 ◽  
Vol 13 (5) ◽  
pp. 954
Author(s):  
Abhilash K. Chandel ◽  
Lav R. Khot ◽  
Behnaz Molaei ◽  
R. Troy Peters ◽  
Claudio O. Stöckle ◽  
...  

Site-specific irrigation management for perennial crops such as grape requires water use assessments at high spatiotemporal resolution. In this study, small unmanned-aerial-system (UAS)-based imaging was used with a modified mapping evapotranspiration at high resolution with internalized calibration (METRIC) energy balance model to map water use (UASM-ET approach) of a commercial, surface, and direct-root-zone (DRZ) drip-irrigated vineyard. Four irrigation treatments, 100%, 80%, 60%, and 40%, of commercial rate (CR) were also applied, with the CR estimated using soil moisture data and a non-stressed average crop coefficient of 0.5. Fourteen campaigns were conducted in the 2018 and 2019 seasons to collect multispectral (ground sampling distance (GSD): 7 cm/pixel) and thermal imaging (GSD: 13 cm/pixel) data. Six of those campaigns were near Landsat 7/8 satellite overpass of the field site. Weather inputs were obtained from a nearby WSU-AgWeatherNet station (1 km). First, UASM-ET estimates were compared to those derived from soil water balance (SWB) and conventional Landsat-METRIC (LM) approaches. Overall, UASM-ET (2.70 ± 1.03 mm day−1 [mean ± std. dev.]) was higher than SWB-ET (1.80 ± 0.98 mm day−1). However, both estimates had a significant linear correlation (r = 0.64–0.81, p < 0.01). For the days of satellite overpass, UASM-ET was statistically similar to LM-ET, with mean absolute normalized ET departures (ETd,MAN) of 4.30% and a mean r of 0.83 (p < 0.01). The study also extracted spatial canopy transpiration (UASM-T) maps by segmenting the soil background from the UASM-ET, which had strong correlation with the estimates derived by the standard basal crop coefficient approach (Td,MAN = 14%, r = 0.95, p < 0.01). The UASM-T maps were then used to quantify water use differences in the DRZ-irrigated grapevines. Canopy transpiration (T) was statistically significant among the irrigation treatments and was highest for grapevines irrigated at 100% or 80% of the CR, followed by 60% and 40% of the CR (p < 0.01). Reference T fraction (TrF) curves established from the UASM-T maps showed a notable effect of irrigation treatment rates. The total water use of grapevines estimated using interpolated TrF curves was highest for treatments of 100% (425 and 320 mm for the 2018 and 2019 seasons, respectively), followed by 80% (420 and 317 mm), 60% (391 and 318 mm), and 40% (370 and 304 mm) of the CR. Such estimates were within 5% to 11% of the SWB-based water use calculations. The UASM-T-estimated water use was not the same as the actual amount of water applied in the two seasons, probably because DRZ-irrigated vines might have developed deeper or lateral roots to fulfill water requirements outside the irrigated soil volume. Overall, results highlight the usefulness of high-resolution imagery toward site-specific water use management of grapevines.


2017 ◽  
Vol 196 ◽  
pp. 108-118 ◽  
Author(s):  
Huaijun Wang ◽  
Yingping Pan ◽  
Yaning Chen ◽  
Zhengwei Ye

Sign in / Sign up

Export Citation Format

Share Document