Study on Efficiency of Rainfall and Flood Water Resources Utilization in Coastal Area

2013 ◽  
Vol 409-410 ◽  
pp. 79-82 ◽  
Author(s):  
Ying Qin Chen ◽  
Xian Feng Huang

Due to the rich resources of urban rainwater and transit flood in coastal areas, rational utilization of rainfall and flood water resources can improve the sustainable utilization, to better serve the coastal development. In this paper, the available quantity of water rainfall and flood water resources in coastal are distributed to domestic water, industrial water, agricultural water and ecologic environmental water. Water price method is used to calculate domestic water efficiency. Energy synthesis is used to calculate the industrial and agricultural water-use efficiency. Ecologic environmental water-use efficiency-sharing coefficient method is used to calculate the ecologic environmental water-use efficiency. Finally, taking Lianyungang City, a Jiangsu coastal city as an example to analyze the rainfall and flood water resources utilization efficiency. The results provide reference to the research for Chinas plain area rainfall and flood water resources efficiency analysis.

2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1541 ◽  
Author(s):  
Xingyuan Xiao ◽  
Limeng Fan ◽  
Xiubin Li ◽  
Minghong Tan ◽  
Tao Jiang ◽  
...  

The middle reaches of the Heihe River are an important food base in the arid regions of Northwest China. The agricultural water consumption in this region accounts for about 90% of the total water consumption. The shortage of water resources is the primary reason for restricting agricultural development. Therefore, studying the efficiency of agricultural water use is essential to improving the effective use of water resources. Under the premise of considering agricultural water saving, we improved the water efficiency model from the perspective of pure agricultural income that farmers are more concerned about. In this study, we took Zhangye City in the middle reaches of the Heihe River as an example, based on meteorological crop data and farmer survey data. Then, we used the input–output method to quantitatively analyze the net income of the crops in Zhangye City. We used the CROPWAT model to calculate the water demand of crops during the growing season. Lastly, we used the improved water-use efficiency (WUE) model to analyze WUE differences of crops in the study area. We reached the following conclusions: (1) among the six crops in the study area, the net profit of seed corn was 20,520 yuan/ha, followed by field corn, 11,700 yuan/ha, then followed by potato, rapeseed, wheat, and barley; (2) the maximum water requirement for the crop growth period was 597.2 mm for field corn, followed by 577.3 mm for seed corn, then followed by rapeseed, wheat, barley, and potato; (3) among the six crops, the WUE calculated using the water efficiency model before and after improvement had obvious differences. The WUE calculated using the original model reached 9.03 yuan/m3 for potato, followed by 6.33 yuan/m3 for seed corn. The WUE calculated using the improved model reached 3.44 yuan/m3 for seed corn, which is the maximum, followed by potato with 2.25 yuan/m3. Considering the agricultural water saving and crop yields, we propose to properly expand the cultivation of seed corn and potato in the middle reaches of the Heihe River. This would be more conducive to achieving a “win-win” situation for water conservation and revenue.


2020 ◽  
Vol 12 (22) ◽  
pp. 9665
Author(s):  
Weiwei Wang ◽  
Jigan Wang ◽  
Xinchun Cao

The increasing shortage of water resources and the growing demand for crops make water use efficiency a decisive factor for the sustainable and healthy development of the agricultural system. In order to evaluate agricultural water use efficiency from the water footprint perspective, the current study constructed the comprehensive water efficiency (CWE) index based on eight single agricultural water use efficiency performance parameters. The water resources utilization and efficiency in the wheat production system of China from 2006 to 2015 were analyzed and the sensitivity of single indices for CWE was identified. The results show that the national crop water footprint (CWF) for wheat production was estimated to be, including 46.3% blue, 36.6% green and 17.0% blue components, respectively. The spatial distribution patterns of water use efficiency performance indices were different. CWE of the country was 0.387, showing an upward trend over time and decreased from the southeast to the northwest geographically. Crop water productivity (CWP), productive water ratio (PWR) and rainwater consumption ratio (RCR) turned out to be the first three sensitive parameters for CWE in China. The improvement of China’s overall CWE relied on reducing inefficient blue-green water use and increasing the output capacity for per unit water. Advanced agricultural water-saving technologies were in high need for goal achievement, especially for the Huang-Huai-Hai plain, which held more than 70% of Chinese wheat production and CWF. The results provide support for efficient utilization and sustainable development of water resources in the agricultural system.


2020 ◽  
Vol 12 (23) ◽  
pp. 10192
Author(s):  
Wei Qu ◽  
Yanmei Tan ◽  
Zhentao Li ◽  
Eefje Aarnoudse ◽  
Qin Tu

Water resources play a vital role in the process of economic development, especially in arid and semi-arid regions. Improving the efficiency of water use is an effective way to solve the shortage of water resources. In this paper, influencing factors of water utilization efficiency in three inland river basins (Shiyang, Heihe, and Shule river) in Gansu Province, Northwest China, are investigated. Using survey data of 306 households, results of the multiple linear regression analysis show that management capacity and its strictness in a different basin, irrigation technology and facility conditions, and farmers’ self-government are key factors affecting farmers’ irrigation efficiency. Additionally, factors at the farmer and family level, as well as the differences in natural conditions and economic and social development in different regions, also have a significant impact on water use efficiency.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2620 ◽  
Author(s):  
Wenge Zhang ◽  
Xianzeng Du ◽  
Anqi Huang ◽  
Huijuan Yin

Proper water use requires its monitoring and evaluation. An indexes system of overall water use efficiency is constructed here that covers water consumption per 10,000 yuan GDP, the coefficient of effective utilization of irrigation water, the water consumption per 10,000 yuan of industrial value added, domestic water consumption per capita of residents, and the proportion of water function zone in key rivers and lakes complying with water-quality standards and is applied to 31 provinces in China. Efficiency is first evaluated by a projection pursuit cluster model. Multidimensional efficiency data are transformed into a low-dimensional subspace, and the accelerating genetic algorithm then optimizes the projection direction, which determines the overall efficiency index. The index reveals great variety in regional water use, with Tianjin, Beijing, Hebei, and Shandong showing highest efficiency. Shanxi, Liaoning, Shanghai, Zhejiang, Henan, Shanxi, and Gansu also use water with high efficiency. Medium efficiency occurs in Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Hainan, Qinghai, Ningxia, and Low efficiency is found for Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, and Xinjiang. Tibet is the least efficient. The optimal projection direction is a* = (0.3533, 0.7014, 0.4538, 0.3315, 0.1217), and the degree of influence of agricultural irrigation efficiency, water consumption per industrial profit, water used per gross domestic product (GDP), domestic water consumption per capita of residents, and environmental water quality on the result has decreased in turn. This may aid decision making to improve overall water use efficiency across China.


2019 ◽  
Vol 21 (3) ◽  
pp. 381-396 ◽  
Author(s):  
Kun Cheng ◽  
Shuai Wei ◽  
Qiang Fu ◽  
Wei Pei ◽  
Tianxiao Li

Abstract Adaptive management is currently an important method to optimize the management of complex water resources systems. Regional water resources adaptive management was conducted based on the advanced theory of a complex system multi-agent model; the state of an agent was tracked and modified by information entropy theory, which was improved by using individual standard deviations. With the goal of optimizing the adaptation of each agent of the region, water resources in the major grain production area of China were managed under the constraints of the total annual available water resources and water use efficiency requirements for 2015 and 2030. By introducing the adaptive water resources management in 2015, the domestic benefits and economic benefits increased by 2.90% and 14.81%, respectively, with respect to observed values. The ecological benefits declined by 3.63%, but ecological water demand was fully satisfied, and the ecological water environment was improved. Given the water use efficiency targets in 2030, applying adaptive management resulted in an increase of domestic, economic, and ecological benefits of 34.29%, 21.14%, and 1.78%, respectively. The results show that the adaptive management method presented can help managers to balance the benefits of various agents to determine the direction of water resources management decisions.


Sign in / Sign up

Export Citation Format

Share Document