Inferences for multiple interval type-I censoring scheme

Author(s):  
Shubham Agnihotri ◽  
Sanjay Kumar Singh ◽  
Umesh Singh
2019 ◽  
Vol 48 (3) ◽  
pp. 76-86
Author(s):  
Arun Kaushik

In this paper, we have considered the problem of optimal inspection times for the progressive interval type-I censoring scheme where uncertainty in the process is governed by the two-parameter Rayleigh distribution. Here, we also introduced some optimality criterion and determined the optimum inspection times, accordingly. The effect of the number of inspections and choice of optimally spaced inspection times based on the asymptotic relative efficiencies of the maximum likelihood estimates of the parameters are also investigated. Further, we have discussed the optimal progressive type-I interval censoring plan when the inspection times and the expected proportions of total failures in the experiment are under control.


2017 ◽  
Vol 46 (2) ◽  
pp. 33-47 ◽  
Author(s):  
Arun Kaushik ◽  
Aakriti Pandey ◽  
Sandeep Kumar Maurya ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

The present article aims to point and interval estimation of the parameters of generalised exponential distribution (GED) under progressive interval type-I (PITI) censoring scheme with random removals. The considered censoring scheme is most useful in those cases where continuous examination is not possible. Maximum likelihood, expectation-maximization and Bayesian procedures have been developed for the estimation of parameters of the GED, based on a PITI censored sample. Real datasets have been considered to illustrate the applicability of the proposed work. Further, we have compared the performances of the proposed estimators under PITI censoring to that of the complete sample.


Statistics ◽  
2017 ◽  
Vol 52 (2) ◽  
pp. 345-363 ◽  
Author(s):  
Suparna Basu ◽  
Sanjay K. Singh ◽  
Umesh Singh

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nada M. Alfaer ◽  
Hassan M. Aljohani

The comparative life testing for products from different production lines under joint censoring schemes has received some attention over the past few years. Mondal and Kundu recently used the balanced joint progressive type-II censoring scheme to discuss the comparative exponential and Weibull populations. This paper implements the balanced censoring scheme with a hybrid progressive type-I censoring scheme known as a balanced joint progressive hybrid type-I censoring scheme (BJPHCS). The life Lomax products’ model formulation from two different lines of production with BJPHCS is discussed. The model parameters are estimated under maximum likelihood estimation for point and the corresponding asymptotic confidence intervals. Under independent gamma priors, the Bayes estimators and associated credible intervals are obtained with the help of MCMC technique. The validity of the theoretical results developed in this paper for estimation problems is discussed through numerical example and Monte Carlo simulation study, which report the estimators’ quality. Finally, we give a brief comment describing the numerical results.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 636 ◽  
Author(s):  
Ali Algarni ◽  
Abdullah M. Almarashi ◽  
Hassan Okasha ◽  
Hon Keung Tony Ng

In this paper, E-Bayesian estimation of the scale parameter, reliability and hazard rate functions of Chen distribution are considered when a sample is obtained from a type-I censoring scheme. The E-Bayesian estimators are obtained based on the balanced squared error loss function and using the gamma distribution as a conjugate prior for the unknown scale parameter. Also, the E-Bayesian estimators are derived using three different distributions for the hyper-parameters. Some properties of E-Bayesian estimators based on balanced squared error loss function are discussed. A simulation study is performed to compare the efficiencies of different estimators in terms of minimum mean squared errors. Finally, a real data set is analyzed to illustrate the applicability of the proposed estimators.


Sign in / Sign up

Export Citation Format

Share Document