Transplantation of Human Corneal Endothelial Cells Cultured on Bio-Engineered Collagen Vitrigel in a Rabbit Model of Corneal Endothelial Dysfunction

2017 ◽  
Vol 42 (11) ◽  
pp. 1420-1425 ◽  
Author(s):  
Junko Yoshida ◽  
Seiichi Yokoo ◽  
Ayumi Oshikata-Miyazaki ◽  
Shiro Amano ◽  
Toshiaki Takezawa ◽  
...  
2018 ◽  
Vol 10 ◽  
pp. 251584141881580 ◽  
Author(s):  
Sepehr Feizi

A transparent cornea is essential for the formation of a clear image on the retina. The human cornea is arranged into well-organized layers, and each layer plays a significant role in maintaining the transparency and viability of the tissue. The endothelium has both barrier and pump functions, which are important for the maintenance of corneal clarity. Many etiologies, including Fuchs’ endothelial corneal dystrophy, surgical trauma, and congenital hereditary endothelial dystrophy, lead to endothelial cell dysfunction. The main treatment for corneal decompensation is replacement of the abnormal corneal layers with normal donor tissue. Nowadays, the trend is to perform selective endothelial keratoplasty, including Descemet stripping automated endothelial keratoplasty and Descemet’s membrane endothelial keratoplasty, to manage corneal endothelial dysfunction. This selective approach has several advantages over penetrating keratoplasty, including rapid recovery of visual acuity, less likelihood of graft rejection, and better patient satisfaction. However, the global limitation in the supply of donor corneas is becoming an increasing challenge, necessitating alternatives to reduce this demand. Consequently, in vitro expansion of human corneal endothelial cells is evolving as a sustainable choice. This method is intended to prepare corneal endothelial cells in vitro that can be transferred to the eye. Herein, we describe the etiologies and manifestations of human corneal endothelial cell dysfunction. We also summarize the available options for as well as recent developments in the management of corneal endothelial dysfunction.


2015 ◽  
Vol 41 (3) ◽  
pp. 190-196 ◽  
Author(s):  
Jin Woo Noh ◽  
Jin Joo Kim ◽  
Joon Young Hyon ◽  
Eui-Sang Chung ◽  
Tae-Young Chung ◽  
...  

Author(s):  
Lucas Monferrari Monteiro Vianna ◽  
Hao-Dong Li ◽  
Jeffrey D. Holiman ◽  
Christopher Stoeger ◽  
Rubens Belfort Jr. ◽  
...  

2019 ◽  
Vol 97 (S263) ◽  
Author(s):  
Alina Miron ◽  
Daniele Spinozzi ◽  
Jessica T. Lie ◽  
Mehrdad Rafat ◽  
Neil Lagali ◽  
...  

2021 ◽  
Author(s):  
Peng Sun ◽  
Lin Shen ◽  
Yuanbin Li ◽  
Liqun Du ◽  
Xinyi Wu

Abstract Background At present, corneal transplantation is still the only way to treat serious corneal diseases caused by corneal endothelial dysfunction. However, the shortage of donor cornea tissues and human corneal endothelial cells (HCECs) remains a worldwide challenge. We cultivated HCECs by the use of a conditioned medium from orbital adipose-derived stem cells (OASC-CM) in vitro. Then the HCECs were used to treat animal corneal endothelial dysfunction models via cell transplantation. The initial effect was gratifying. The purpose of this study was to conduct a long-term observation and evaluation after cell transplantation. Methods First, orbital adipose-derived stem cells (OASCs) were isolated to prepare conditioned medium (CM). Then HCECs were cultivated and expanded by the usage of CM (CM-HCECs). Related CEC markers were analyzed by immunofluorescence. Cells proliferation ability was also tested. CM-HCECs were then transplanted into monkey corneal endothelial dysfunction models by cell injection. We carried out a 24-month postoperative preclinical observation and verified the long-term effect by histological examination and transcriptome sequencing. Results CM-HCECs expressed HCEC related markers and maintained polygonal cell morphology after several passages. During 24 months of cell transplantation into the monkey's anterior chamber, the cornea thickness and transparency kept healthy status, and the corneal endothelial cell density remained in the normal range. Gene sequencing showed that the gene expression pattern of CM-HCECs was similar to that of transplanted cells and HCECs. Conclusions The proliferation and repair ability of HCECs were significantly improved due to the effect of OASC-CM. The result of this study confirmed long-term therapeutic efficacy of CM-HCECs in vivo. Our research provided an extensive cell source and a promising prospect for regenerative medicine and cell-based therapy.


Cornea ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1175-1181 ◽  
Author(s):  
Mohit Parekh ◽  
Vito Romano ◽  
Alessandro Ruzza ◽  
Stephen B. Kaye ◽  
Diego Ponzin ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Yongsong Liu ◽  
Hong Sun ◽  
Min Hu ◽  
Min Zhu ◽  
Sean Tighe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document