scholarly journals Ambient aerosol composition by infrared spectroscopy and partial least squares in the chemical speciation network: Multilevel modeling for elemental carbon

2018 ◽  
Vol 52 (6) ◽  
pp. 642-654 ◽  
Author(s):  
Andrew T. Weakley ◽  
Satoshi Takahama ◽  
Anthony S. Wexler ◽  
Ann M. Dillner
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 666
Author(s):  
Rafael Font ◽  
Mercedes del Río-Celestino ◽  
Diego Luna ◽  
Juan Gil ◽  
Antonio de Haro-Bailón

The near-infrared spectroscopy (NIRS) combined with modified partial least squares (modified PLS) regression was used for determining the neutral detergent fiber (NDF) and the acid detergent fiber (ADF) fractions of the chickpea (Cicer arietinum L.) seed. Fifty chickpea accessions (24 desi and 26 kabuli types) and fifty recombinant inbred lines F5:6 derived from a kabuli × desi cross were evaluated for NDF and ADF, and scanned by NIRS. NDF and ADF values were regressed against different spectral transformations by modified partial least squares regression. The coefficients of determination in the cross-validation and the standard deviation from the standard error of cross-validation ratio were, for NDF, 0.91 and 3.37, and for ADF, 0.98 and 6.73, respectively, showing the high potential of NIRS to assess these components in chickpea for screening (NDF) or quality control (ADF) purposes. The spectral information provided by different chromophores existing in the chickpea seed highly correlated with the NDF and ADF composition of the seed, and, thus, those electronic transitions are highly influenced on model fitting for fiber.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jordi Ortuño ◽  
Sokratis Stergiadis ◽  
Anastasios Koidis ◽  
Jo Smith ◽  
Chris Humphrey ◽  
...  

Abstract Background The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT’s full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000–550 cm−1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization—mDP, procyanidins:prodelphidins ratio—PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. Results The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). Conclusions MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.


2018 ◽  
Vol 11 (7) ◽  
pp. e201700365 ◽  
Author(s):  
Raphael Henn ◽  
Christian G. Kirchler ◽  
Zora L. Schirmeister ◽  
Andreas Roth ◽  
Werner Mäntele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document