Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage: better cartilage delineation after intra-articular than intravenous gadolinium injection

2006 ◽  
Vol 47 (4) ◽  
pp. 391-396 ◽  
Author(s):  
M. Boesen ◽  
K. E. Jensen ◽  
E. Qvistgaard ◽  
B. Danneskiold-SamsØe ◽  
C. Thomsen ◽  
...  

Purpose: To investigate and compare delayed gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in the hip joint using intravenous (i.v.) or ultrasound-guided intra-articular (i.a.) Gd-DTPA injection. Material and Methods: In 10 patients (50% males, mean age 58 years) with clinical and radiographic hip osteoarthritis (OA; Kellgren score II–III), MRI of the hip was performed twice on a clinical 1.5T MR scanner: On day 1, before and 90–180 min after 0.3 mmol/kg body weight i.v. Gd-DTPA and, on day 8, 90–180 min after ultrasound-guided i.a. injection of a 4 mmol/l Gd-DTPA solution. Coronal STIR, coronal T1 fat-saturated spin-echo, and a cartilage-sensitive gradient-echo sequence (3D T1 SPGR) in the sagittal plane were applied. Results: Both the post-i.v. and post-i.a. Gd-DTPA images showed significantly higher signal-to-noise (SNR) and contrast-to-noise (CNR) in the joint cartilage compared to the non-enhanced images ( P<0.002). I.a. Gd-DTPA provided significantly higher SNR and CNR compared to i.v. Gd-DTPA ( P<0.01). Furthermore, a better delineation of the cartilage in the synovial/cartilage zone and of the chondral/subchondral border was observed. Conclusion: The dGEMRIC MRI method markedly improved delineation of hip joint cartilage compared to non-enhanced MRI. The i.a. Gd-DTPA provided the best cartilage delineation. dGEMRIC is a clinically applicable MRI method that may improve identification of early subtle cartilage damage and the accuracy of volume measurements of hip joint cartilage.

2011 ◽  
Vol 3 (2) ◽  
pp. 11 ◽  
Author(s):  
Bernd Bittersohl

With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint. This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.


Cartilage ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Tobias Hesper ◽  
Bernd Bittersohl ◽  
Christoph Schleich ◽  
Harish Hosalkar ◽  
Rüdiger Krauspe ◽  
...  

Objective Automatic segmentation for biochemical cartilage evaluation holds promise for an efficient and reader-independent analysis. This pilot study aims to investigate the feasibility and to compare delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) hip joint assessment with manual segmentation of acetabular and femoral head cartilage and dGEMRIC hip joint assessment using automatic surface and volume processing software at 3 Tesla. Design Three-dimensional (3D) dGEMRIC data sets of 6 patients with hip-related pathology were assessed (1) manually including multiplanar image reformatting and regions of interest (ROI) analysis and (2) automated by using a combined surface and volume processing software. For both techniques, T1Gd values were obtained in acetabular and femoral head cartilage at 7 regions (anterior, anterior-superior, superior-anterior, superior, superior-posterior, posterior-superior, and posterior) in central and peripheral portions. Correlation between both techniques was calculated utilizing Spearman’s rank correlation coefficient. Results A high correlation between both techniques was observed for acetabular (ρ = 0.897; P < 0.001) and femoral head (ρ = 0.894; P < 0.001) cartilage in all analyzed regions of the hip joint (ρ between 0.755 and 0.955; P < 0.001). Conclusions Automatic cartilage segmentation with dGEMRIC assessment for hip joint cartilage evaluation seems feasible providing high to excellent correlation with manually performed ROI analysis. This technique is feasible for an objective, reader-independant and reliable assessment of biochemical cartilage status.


2017 ◽  
Vol 62 (No. 11) ◽  
pp. 625-630
Author(s):  
J. Glodek ◽  
Z. Adamiak ◽  
M. Mieszkowska ◽  
A. Przeworski

We describe here a case study of a 16-month-old female European shorthair cat examined about 6 months after the osteosynthesis of a femoral fracture. Clinical examination revealed a non-weightbearing left limb, pain upon manipulation of the hip joint, complete immobilisation of the stifle joint and muscle atrophy in the left thigh. Low-field magnetic resonance images were acquired in sagittal, transverse and dorsal planes with T1-weighted spin echo, T2-weighted fast spin echo, T1-weighted gradient echo, gradient echo short tau inversion recovery and T1-weighted XBone sequences. Total examination time was 59 min 20 s. The obtained images revealed the presence of osteophytes on the surface of the femoral head, subluxation of the hip joint, atrophy and fatty infiltration of the quadriceps femoris muscle. The symmetry and size of callus in the fracture site were also evaluated. Based on the results of the magnetic resonance imaging exam, the patient was diagnosed with hip osteoarthritis, atrophy and fatty degeneration of the quadriceps femoris muscle with homogeneous and symmetrical distribution of callus in the fracture site. The results of this study confirm the high diagnostic value of low-field magnetic resonance imaging in diagnostics of musculoskeletal injuries in cats.


2021 ◽  
Vol 9 (3) ◽  
pp. 232596712098817
Author(s):  
Till D. Lerch ◽  
Dimitri Ambühl ◽  
Florian Schmaranzer ◽  
Inga A.S. Todorski ◽  
Simon D. Steppacher ◽  
...  

Background: Anterior femoroacetabular impingement (FAI) is associated with labral tears and acetabular cartilage damage in athletic and young patients. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is an imaging method for detecting early damage to cartilage. Purpose: We evaluated the following questions: (1) What is the sensitivity and specificity of morphological magnetic resonance imaging (MRI) and dGEMRIC for detecting cartilage damage? Do the mean acetabular and femoral dGEMRIC indices differ between (2) superior acetabular clock positions with and without impingement and (3) between cam- and pincer-type FAI? Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: This was a retrospective comparative study of 21 hips (20 patients with symptomatic anterior FAI) without osteoarthritis on anteroposterior radiographs. Morphological MRI and dGEMRIC (3.0-T, 3-dimensional [3D] T1 maps, dual–flip angle technique) of the same hip joint were compared. Intraoperative acetabular cartilage damage was assessed in patients who underwent surgical treatment. Computed tomography (CT)–based 3D bone models of the same hip joint were used as the gold standard for the detection of impingement, and dGEMRIC indices and zones of morphologic damage were compared with the CT-based impingement zones. Results: Of the 21 hips, 10 had cam-type FAI and 8 had pincer-type FAI according to radiographs. The mean age was 30 ± 9 years (range, 17-48 years), 71% were female, and surgical treatment was performed in 52%. We found a significantly higher sensitivity (69%) for dGEMRIC compared with morphological MRI (42%) in the detection of cartilage damage ( P < .001). The specificity of dGEMRIC was 83% and accuracy was 78%. The mean peripheral acetabular and femoral dGEMRIC indices for clock positions with impingement (485 ± 141 and 440 ± 121 ms) were significantly lower compared with clock positions without impingement (596 ± 183 and 534 ± 129 ms) ( P < .001). Hips with cam-type FAI had significantly lower acetabular dGEMRIC indices compared with hips with pincer-type FAI on the anterosuperior clock positions (1 to 3 o’clock) ( P = .018). Conclusion: MRI with dGEMRIC was more sensitive than morphological MRI, and lower dGEMRIC values were found for clock positions with impingement as detected on 3D-CT. This could aid in patient-specific diagnosis of FAI, preoperative patient selection, and surgical decision making to identify patients with cartilage damage who are at risk for inferior outcomes after hip arthroscopy.


10.4081/2641 ◽  
2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Christoph Zilkens ◽  
Falk Miese ◽  
Marcus Jager ◽  
Bernd Bittersohl ◽  
Rüdiger Krauspe

2012 ◽  
Vol 42 (5) ◽  
pp. 699-705 ◽  
Author(s):  
Christoph Zilkens ◽  
Falk R. Miese ◽  
Clemens Crumbiegel ◽  
Young-Jo Kim ◽  
Monika Herten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document