healthy cartilage
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 32)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 22 (24) ◽  
pp. 13329
Author(s):  
Lourdes Alcaide-Ruggiero ◽  
Verónica Molina-Hernández ◽  
M. M. Granados ◽  
J. M. Domínguez

Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.


Cartilage ◽  
2021 ◽  
pp. 194760352110572
Author(s):  
Katherine Wang ◽  
Q.Y. Esbensen ◽  
T.A. Karlsen ◽  
C.N. Eftang ◽  
C. Owesen ◽  
...  

Objective To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. Design Cartilage biopsies were collected from patients in 3 groups ( n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. Results RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. Conclusion The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.


2021 ◽  
pp. 141-149
Author(s):  
Deepak Goyal ◽  
Anjali Goyal

2021 ◽  
Vol 10 (4) ◽  
pp. 3340-3342
Author(s):  
Om C. Wadhokar

Knee joint is type of hinge joint Knee joint consist of medial menisci and lateral menisci. Menisci plays an important role to maintain healthy cartilage. Medial meniscus commonly injured than lateral meniscus due to it is relatively lack of mobility. A case of 32 year female is presented in this report. Patient complaints of pain in medial side of right knee joint, inability to stand for longer time, restriction in daily activities. McMurray test was done and diagnosed medial meniscus tear. Physiotherapy treatment is mentioned in this report. The study conclude that there is significant improvement in range of motion , muscle strength , can able to perform activities of daily living with the help of physiotherapy treatment without any surgical approach.


2021 ◽  
Vol 22 (15) ◽  
pp. 7876
Author(s):  
Chenshuang Li ◽  
Zhong Zheng

Osteoarthritis (OA) is a major public health challenge that imposes a remarkable burden on the affected individuals and the healthcare system. Based on the clinical observation, males and females have different prevalence rates and severity levels of OA. Thus, sex-based differences may play essential roles in OA’s prognosis and treatment outcomes. To date, the comprehensive understanding of the relationship between sex and OA is still largely lacking. In the current study, we analyzed a published transcriptome dataset of knee articular cartilage (GSE114007) from 18 healthy (five females, 13 males) and 20 OA (11 females, nine males) donors to provide a slight insight into this important but complex issue. First, comparing female healthy cartilage samples with those of males revealed 36 differential expression genes (DEGs), indicating the fundamental sex-related differences at the molecular level. Meanwhile, 923 DEGs were distinguished between OA and healthy female cartilage, which can be enriched to 15 Reactome pathways. On the other hand, when comparing OA and healthy male cartilage, there are only 419 DEGs were identified, and only six pathways were enriched against the Reactome database. The different signaling response to OA in the male and female cartilage was further enforced by recognizing 50 genes with significantly different OA-responsive expression fold changes in males and females. Particularly, 14 Reactome pathways, such as “Extracellular matrix organization”, “Collagen biosynthesis and modifying enzymes”, “Dissolution of fibrin clot”, and “Platelet Aggregation (Plug formation)”, can be noted from these 50 sex-dependent OA-responsive genes. Overall, the current study explores the Sex as a Biological Variable (SABV) at the transcriptomic level in the knee articular cartilage in both healthy status and OA event, which could help predict the differential OA prognosis and treatment outcome of males and female patients.


2021 ◽  
Vol 10 (13) ◽  
pp. 2825
Author(s):  
Gianluca Vadalà ◽  
Luca Ambrosio ◽  
Caterina Cattani ◽  
Roberta Bernardini ◽  
Antonino Giacalone ◽  
...  

Cartilage neoangiogenesis holds a prominent role in osteoarthritis (OA) pathogenesis. This study aimed to assess the efficacy bevacizumab, an antibody against vascular endothelial growth factor and inhibitor of angiogenesis, in a rabbit OA model. Animals were divided into four groups: one receiving a sham intra-articular knee injection and three groups undergoing 5, 10, and 20 mg intra-articular bevacizumab injections. The effect of the antibody on articular cartilage and synovium was assessed through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemistry was performed to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression. Bevacizumab treatment led to a significant reduction of cartilage degeneration and synovial OA changes. Immunohistochemistry revealed significantly lower cartilage MMP-13 expression levels in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. The antibody also resulted in increased production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen, while aggrecan content was even higher than in the healthy cartilage. Intra-articular bevacizumab has been demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose.


Author(s):  
Franziska Meyer ◽  
Annalena Dittmann ◽  
Uwe Kornak ◽  
Maria Herbster ◽  
Thomas Pap ◽  
...  

Basic calcium phosphate (BCP)-based calcification of cartilage is a common finding during osteoarthritis (OA) and is directly linked to the severity of the disease and hypertrophic differentiation of chondrocytes. Chondrocalcinosis (CC) is associated with calcium pyrophosphate dihydrate (CPPD) deposition disease in the joint inducing OA-like symptoms. There is only little knowledge about the effect of CPPD crystals on chondrocytes and the signaling pathways involved in their generation. The aim of this study was to investigate the chondrocyte phenotype in CC cartilage and the effect of CPPD crystals on chondrocytes. Cartilage samples of patients with CC, patients with severe OA, and healthy donors were included in this study. The presence of CC was evaluated using standard X-ray pictures, as well as von Kossa staining of cartilage sections. OA severity was evaluated using the Chambers Score on cartilage sections, as well as the radiological Kellgren–Lawrence Score. Patients with radiologically detectable CC presented calcification mainly on the cartilage surface, whereas OA patients showed calcification mainly in the pericellular matrix of hypertrophic chondrocytes. OA cartilage exhibited increased levels of collagen X and matrix metalloproteinase 13 (MMP13) compared with CC and healthy cartilage. This observation was confirmed by qRT-PCR using cartilage samples. No relevant influence of CPPD crystals on hypertrophic marker genes was observed in vitro, whereas BCP crystals significantly induced hypertrophic differentiation of chondrocytes. Interestingly, we observed an increased expression of p16 and p21 in cartilage samples of CC patients compared with OA patients and healthy controls, indicating cellular senescence. To investigate whether CPPD crystals were sufficient to induce senescence, we incubated chondrocytes with BCP and CPPD crystals and quantified senescence using β-gal staining. No significant difference was observed for the staining, but an increase of p16 expression was observed after 10 days of culture. Primary chondrocytes from CC patients produced CPPD crystals in culture. This phenotype was stabilized by mitomycin C-induced senescence. Healthy and OA chondrocytes did not exhibit this phenotype. BCP and CPPD crystals seem to be associated with two different chondrocyte phenotypes. Whereas BCP deposition is associated with chondrocyte hypertrophy, CPPD deposition is associated with cellular senescence.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250244
Author(s):  
Jan P. Engelhardt ◽  
Andy Schütte ◽  
Svetlana Hetjens ◽  
Gregor Reisig ◽  
Markus L. Schwarz

Introduction We saw a lack of data on the biomechanical behavior of degenerated articular cartilage (OA) compared with that of healthy cartilage, even though the susceptibility to wear and tear of articular cartilage plays a key role in the progression of osteoarthritis (OA). Therefore, we performed a comparison between naturally occurring OA and healthy cartilage from pigs, before and after tribological stress. Aim The aim of the study was to compare OA-cartilage with healthy cartilage and to analyze the resilience to tribological shear stress, which will be measured as height loss (HL), and to friction forces of the cartilage layers. The findings will be substantiated in macro- and microscopical evaluations before and after tribological exposure. Methods We assessed stifle joints of fifteen old and sixteen young pigs from the local abattoir radiologically, macroscopically and histologically to determine possible OA alterations. We put pins from the femoral part of the joints and plates from the corresponding tibial plateaus in a pin-on-plate tribometer under stress for about two hours with about 1108 reciprocating cycles under a pressure of approximately 1 MPa. As a surrogate criterion of wear and tear, the HL was recorded in the tribometer. The heights of the cartilage layers measured before and after the tribological exposure were compared histologically. The condition of the cartilage before and after the tribological exposure was analyzed both macroscopically with an adapted ICRS score and microscopically according to Little et al. (2010). We assessed the friction forces acting between the surfaces of the cartilage pair–specimens. Results Articular cartilage taken from old pigs showed significant degenerative changes compared to that taken from the young animals. The macroscopic and microscopic scores showed strong alterations of the cartilage after the tribological exposure. There was a noticeable HL of the cartilage specimens after the first 100 to 300 cycles. The HL after tribological exposure was lower in the group of the old animals with 0.52 mm ± 0.23 mm than in the group of the young animals with 0.86 mm ± 0.26 mm (p < 0.0001). The data for the HL was validated by the histological height measurements with 0.50 mm ± 0.82 mm for the old and 0.79 mm ±0.53 mm for the young animals (p = 0.133). The friction forces measured at the cartilage of the old animals were 2.25 N ± 1.15 N and 1.89 N ± 1.45 N of the young animals (p = 0.3225). Conclusion Unlike articular cartilage from young pigs, articular cartilage from old pigs showed OA alterations. Tribological shear stress exposure revealed that OA cartilage showed less HL than healthy articular cartilage. Tribological stress exposure in a pin–on–plate tribometer seemed to be an appropriate way to analyze the mechanical stability of articular cartilage, and the applied protocol could reveal weaknesses of the assessed cartilage tissue. Friction and HL seemed to be independent parameters when degenerated and healthy articular cartilage were assessed under tribological exposure in a pin–on- plate tribometer.


2021 ◽  
Vol 11 (4) ◽  
pp. 1552
Author(s):  
Przemysław Krakowski ◽  
Robert Karpiński ◽  
Mariusz Jojczuk ◽  
Agata Nogalska ◽  
Józef Jonak

Purpose: This study was conducted in order to evaluate the clinical utility of MRI in detecting cartilage lesions and its dependence on anatomical location and lesion grade. Methods: A retrospective analysis of MRI reports and arthroscopic findings was performed on 190 consecutive patients treated in one orthopaedic department. MRI protocols were prepared by 18 radiologists from 10 different MRI centers with the use of 1.5 T magnets. The image protocols were selected by reading radiologists. Four hundred and fifty-three chondral lesions in five anatomic locations were identified during this study and graded according to the ICRS classification. Sensitivity, specificity, receiver operating characteristic (ROC), and Bangdiwala’s observer agreement charts were utilized to evaluate the diagnostic performance. Results: Only approximately 30% of MRI showed an adequate cartilage status in all anatomical locations. The sensitivity ranged from 92% in healthy cartilage to 5% in grade I lesions. The specificity differed also grossly depending on the lesion grade, reaching 96.5% in grade four lesions and 38% in healthy cartilage. The medial compartment Bangdiwala’s observer agreement charts show a gross underestimation of cartilage lesions, and the area under the curve (AUC) of ROC surpasses 0.7 only in the medial femoral condyle and patella-femoral joint. Overall, the medial compartment accuracy was significantly higher than the lateral compartment. The MRI showed correspondence of its diagnostic performance with cartilage lesion severity. Conclusion: MRI underestimates the extent of cartilage injury and evaluation of cartilage defects based on MRI should be taken with caution by orthopaedic surgeons in planning surgery. Surgical planning on MRI should take cartilage lesions under consideration, even if no cartilage lesions are reported on the MRI.


Cartilage ◽  
2021 ◽  
pp. 194760352198942
Author(s):  
Kazunori Shimomura ◽  
Hidetoshi Hamada ◽  
David A. Hart ◽  
Wataru Ando ◽  
Takashi Nishii ◽  
...  

Objective The aim of this study was to elucidate the efficacy of T2-mapping MRI and correlation with histology for the evaluation of tissue repair quality following the first-in-human implantation of an autologous tissue engineered construct. Design We directly compared the results of T2-mapping MRI of cartilage repair tissue with the histology of a biopsy specimen from the corresponding area at 48 weeks postoperatively in 5 patients who underwent the implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells to repair an isolated cartilage lesion. T2 values and histological scores were compared at each of 2 layers of equally divided halves of the repair tissue (upper and lower zones). Results Histology showed that the repair tissue in the upper zone was dominated by fibrous tissue and the ratio of hyaline-like matrix increased with the depth of the repair tissue. There were significant differences between upper and lower zones in histological scores. Conversely, there were no detectable statistically significant differences in T2 value detected among zones of the repair tissue, but zonal differences were detected in corresponding healthy cartilage. Accordingly, there were no correlations detected between histological scores and T2 values for each repair cartilage zone. Conclusion Discrepancies in the findings between T2 mapping and histology suggest that T2 mapping was limited in ability to detect details in the architecture and composition of the repair cartilage.


Sign in / Sign up

Export Citation Format

Share Document