scholarly journals Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies of isolation contacts

2001 ◽  
Vol 30 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Matti Eronen ◽  
Gunnar Glückert ◽  
Lassi Hatakka ◽  
Orson van de Plassche ◽  
Johannes van der Plicht ◽  
...  
Boreas ◽  
2008 ◽  
Vol 30 (1) ◽  
pp. 17-30 ◽  
Author(s):  
MATTI ERONEN ◽  
GUNNAR GLUCKERT ◽  
LASSI HATAKKA ◽  
ORSON VAN DE PLASSCHE ◽  
JOHANNES VAN DER PLICHT ◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 107071
Author(s):  
Alar Rosentau ◽  
Volker Klemann ◽  
Ole Bennike ◽  
Holger Steffen ◽  
Jasmin Wehr ◽  
...  

2020 ◽  
Author(s):  
M. Nordman ◽  
A. Peltola ◽  
M. Bilker-Koivula ◽  
S. Lahtinen

Abstract We have studied the land uplift and relative sea level changes in the Baltic Sea in northern Europe. To observe the past changes and land uplift, we have used continuous GNSS time series, campaign-wise absolute gravity measurements and continuous tide gauge time series. To predict the future, we have used probabilistic future scenarios tuned for the Baltic Sea. The area we are interested in is Kvarken archipelago in Finland and High Coast in Sweden. These areas form a UNESCO World Heritage Site, where the land uplift process and how it demonstrates itself are the main values. We provide here the latest numbers of land uplift for the area, the current rates from geodetic observations, and probabilistic scenarios for future relative sea level rise. The maximum land uplift rates in Fennoscandia are in the Bothnian Bay of the Baltic Sea, where the maximum values are currently on the order of 10 mm/year with respect to the geoid. During the last 100 years, the land has risen from the sea by approximately 80 cm in this area. Estimates of future relative sea level change have considerable uncertainty, with values for the year 2100 ranging from 75 cm of sea level fall (land emergence) to 30 cm of sea-level rise.


1969 ◽  
Vol 26 ◽  
pp. 29-32
Author(s):  
Ole Bennike ◽  
Martin Skov Andreasen ◽  
Jørn Bo Jensen ◽  
Matthias Moros ◽  
Nanna Noe-Nygaard

The Baltic Sea and Kattegat are connected via three straits: Storebælt, Lillebælt and Øresund (Fig. 1). Øresund is the shallowest with a threshold around 7 m deep and increasing water depths to the north (Fig. 2). In the early Holocene, global sea-level rise led to reflooding of Øresund. It started in northern Øresund which was transformed into a fjord. However, so far the timing of the transgression has not been well determined, but sediment cores collected north of the threshold, at water depths of 12 to 20 m, and a new series of radiocarbon ages help to constrain this. As the relative sea level continued to rise, the threshold in Øresund was also flooded, and Øresund became a strait. In mid-Holocene time, the relative sea level rose until it was 4–5 m higher than at present, and low-lying areas around Øresund became small fjords. During the late Holocene, the relative sea level fell again. Part of the data set discussed here was presented by Andreasen (2005).


Author(s):  
Ole Bennike ◽  
Katrine Juul Andresen ◽  
Peter Moe Astrup ◽  
Jesper Olsen ◽  
Marit-Solveig Seidenkrantz

We propose a new relative shore-level curve for the Aarhus Bugt area, an embayment in eastern Jylland, Denmark, based on a compilation of published and new radiocarbon ages of organic material. Lakes existed in the area during the Late Glacial and Early Holocene. Lake level rose gradually until the region was inundated by the sea at c. 9000 cal. years BP. The relative sea level reached a high stand at about 6000 cal. years BP, when the local relative sea level was c. 3 m above present-day mean sea level. The Aarhus Bugt area was inundated by the sea later than the Limfjord area in northern Jylland, but earlier than the Lillebælt region in southern Denmark. The shore-level curves for these areas differ partly because the glacio-isostatic uplift was more pronounced in the Limfjord area than farther south and partly because the northern regions were inundated by the sea earlier than the southern areas.


Baltica ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Alar Rosentau ◽  
Jan Harff ◽  
Michael Meyer ◽  
Tõnis Oja

2000 ◽  
Vol 53 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Ian D. Goodwin ◽  
Christopher Zweck

AbstractThe Holocene sea-level high stand or “marine limit” in Wilkes Land, East Antarctica, reached ∼30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°–160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.


2007 ◽  
Vol 19 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Bernd Wagner ◽  
Nadja Hultzsch ◽  
Martin Melles ◽  
Damian B. Gore

A 100 cm long sediment sequence was recovered from Beaver Lake in Amery Oasis, East Antarctica, using gravity and piston corers. Sedimentological and mineralogical analyses and the absence of micro and macrofossils indicate that the sediments at the base of the sequence formed under glacial conditions, probably prior to c. 12 500 cal. yr BP. The sediments between c. 81 and 31 cm depth probably formed under subaerial conditions, indicating that isostatic uplift since deglaciation has been substantially less than eustatic sea-level rise and that large areas of the present-day floor of Beaver Lake must have been subaerially exposed following deglaciation. The upper 31 cm of the sediment sequence were deposited under glaciomarine conditions similar to those of today, supporting geomorphic observations that the Holocene was a period of relative sea-level highstand in Amery Oasis.


Sign in / Sign up

Export Citation Format

Share Document