Echiniscus testudo (Doyère, 1840) in New Zealand: anthropogenic dispersal or evidence for the ‘Everything is Everywhere’ hypothesis?

2018 ◽  
Vol 46 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Piotr Gąsiorek ◽  
Katarzyna Vončina ◽  
Łukasz Michalczyk
2021 ◽  
Author(s):  
◽  
Alexander Peter Boast

<p><b>The Chathamiidae are an interesting family of caddisflies, unusual as all of the five known species are believed to breed entirely within the marine intertidal, comprising one of very few known marine insect groups. Additionally the family approaches almost complete endemicity status in New Zealand, and may represent an ancient lineage representative of ancient vicariance from Gondwana. However one species, the common and widespread Philanisus plebeius is also known to have a disjunct population in New South Wales Australia, hypothesised to represent a recent anthropogenic dispersal. This thesis, using DNA information, examined the Chathamiidae at varying phylogenetic levels.</b></p> <p>Firstly the species Philanisus plebeius was incorporated into a thorough intraspecific phylogeography, including samples from both New Zealand and Australia. The population as a whole was genetically diverse, with the population divisible into two major haplogroups, each restricted to discrete geographic areas with no overlap being observed. One of these groups was restricted to just two localities in the central eastern North Island, whereas the remainder included most remaining samples from both Islands of New Zealand, and also Australia. All Australian samples were found to comprise a single haplotype, differing by a single base pair from the most common haplotype in New Zealand. It was decided that the Australian population therefore represents a recent dispersal event from New Zealand, although unless the Australian haplotype remains undiscovered in New Zealand the level of divergence found is not congruent with a human introduction. One sequence intermediate between the two major haplogroups was identified from a single haplotype from Tauranga. It seemed that much of the population of Philanisus plebeius has been affected by recent demographic expansion, likely due to the effects of the last glacial maximum (LGM).</p> <p>The five species of the Chathamiidae were then analysed in a phylogeny. It was found that the genus Chathamia was polyphyletic, with the species C. integripennis nested within the genus Philanisus. The remaining species, C. brevipennis from the Chatham Islands, was basal to all the remaining members of the family. A strict molecular clock found a recent Pleistocene age (roughly 0.5 Ma) for divergence of the Kermadec Island species Philanisus fasciatus, and a Pliocene-Pleistocene age (roughly 3 Ma) for the Chatham Island species Chathamia brevipennis. For a comparison with the species C. brevipennis, the other Chatham Island caddisfly taxa Oecetis chathamensis, and Hydrobiosis lindsayi were compared with New Zealand relatives; indicated to have late and early Pleistocene ages respectively. A short sequence of the gene COI was amplified for the species Philanisus mataua, however this was found to contain two sequences reflecting either heteroplasmy or sample contamination, inhibiting confident phylogenetic placement. Additionally a larval sample from Sydney was demonstrated to represent C. integripennis, recorded outside of Northern New Zealand for the first time. Finally the Chathamiidae was included in a higher level phylogeny with related families, and was show to comprise a monophyletic group, sister to the Australasian family of the Conoesucidae. A relaxed molecular clock estimated a Cretaceous (roughly 90 Ma) age for the Chathamiidae, congruent with a vicariant age in New Zealand.</p>


2021 ◽  
Author(s):  
◽  
Alexander Peter Boast

<p><b>The Chathamiidae are an interesting family of caddisflies, unusual as all of the five known species are believed to breed entirely within the marine intertidal, comprising one of very few known marine insect groups. Additionally the family approaches almost complete endemicity status in New Zealand, and may represent an ancient lineage representative of ancient vicariance from Gondwana. However one species, the common and widespread Philanisus plebeius is also known to have a disjunct population in New South Wales Australia, hypothesised to represent a recent anthropogenic dispersal. This thesis, using DNA information, examined the Chathamiidae at varying phylogenetic levels.</b></p> <p>Firstly the species Philanisus plebeius was incorporated into a thorough intraspecific phylogeography, including samples from both New Zealand and Australia. The population as a whole was genetically diverse, with the population divisible into two major haplogroups, each restricted to discrete geographic areas with no overlap being observed. One of these groups was restricted to just two localities in the central eastern North Island, whereas the remainder included most remaining samples from both Islands of New Zealand, and also Australia. All Australian samples were found to comprise a single haplotype, differing by a single base pair from the most common haplotype in New Zealand. It was decided that the Australian population therefore represents a recent dispersal event from New Zealand, although unless the Australian haplotype remains undiscovered in New Zealand the level of divergence found is not congruent with a human introduction. One sequence intermediate between the two major haplogroups was identified from a single haplotype from Tauranga. It seemed that much of the population of Philanisus plebeius has been affected by recent demographic expansion, likely due to the effects of the last glacial maximum (LGM).</p> <p>The five species of the Chathamiidae were then analysed in a phylogeny. It was found that the genus Chathamia was polyphyletic, with the species C. integripennis nested within the genus Philanisus. The remaining species, C. brevipennis from the Chatham Islands, was basal to all the remaining members of the family. A strict molecular clock found a recent Pleistocene age (roughly 0.5 Ma) for divergence of the Kermadec Island species Philanisus fasciatus, and a Pliocene-Pleistocene age (roughly 3 Ma) for the Chatham Island species Chathamia brevipennis. For a comparison with the species C. brevipennis, the other Chatham Island caddisfly taxa Oecetis chathamensis, and Hydrobiosis lindsayi were compared with New Zealand relatives; indicated to have late and early Pleistocene ages respectively. A short sequence of the gene COI was amplified for the species Philanisus mataua, however this was found to contain two sequences reflecting either heteroplasmy or sample contamination, inhibiting confident phylogenetic placement. Additionally a larval sample from Sydney was demonstrated to represent C. integripennis, recorded outside of Northern New Zealand for the first time. Finally the Chathamiidae was included in a higher level phylogeny with related families, and was show to comprise a monophyletic group, sister to the Australasian family of the Conoesucidae. A relaxed molecular clock estimated a Cretaceous (roughly 90 Ma) age for the Chathamiidae, congruent with a vicariant age in New Zealand.</p>


1999 ◽  
Vol 190 ◽  
pp. 563-566
Author(s):  
J. D. Pritchard ◽  
W. Tobin ◽  
J. V. Clausen ◽  
E. F. Guinan ◽  
E. L. Fitzpatrick ◽  
...  

Our collaboration involves groups in Denmark, the U.S.A. Spain and of course New Zealand. Combining ground-based and satellite (IUEandHST) observations we aim to determine accurate and precise stellar fundamental parameters for the components of Magellanic Cloud Eclipsing Binaries as well as the distances to these systems and hence the parent galaxies themselves. This poster presents our latest progress.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


1998 ◽  
Vol 36 (5) ◽  
pp. 255-262
Author(s):  
SIMPANYA ◽  
JARVIS ◽  
BAXTER

Sign in / Sign up

Export Citation Format

Share Document