Isometries of symmetric gauge functions

1991 ◽  
Vol 30 (1-2) ◽  
pp. 81-92 ◽  
Author(s):  
Dragomir Ž. Đoković ◽  
Chi-Kwong Li ◽  
Leiba Rodman
1959 ◽  
Vol 11 (4) ◽  
pp. 231-235 ◽  
Author(s):  
L. Mirsky

Making use of properties of doubly-stochastic matrices, I recently gave a simple proof (4) of a theorem of Ky Fan (Theorem 2b below) on symmetric gauge functions. I now propose to show that the same idea can be employed to derive a whole series of results on convex functions ; in particular, certain well-known inequalities of Hardy-Littlewood-Pólya and of Pólya will emerge as specìal cases.


2022 ◽  
Vol 275 (1349) ◽  
Author(s):  
Leonard Gross

The existence and uniqueness of solutions to the Yang-Mills heat equation is proven over R 3 \mathbb {R}^3 and over a bounded open convex set in R 3 \mathbb {R}^3 . The initial data is taken to lie in the Sobolev space of order one half, which is the critical Sobolev index for this equation over a three dimensional manifold. The existence is proven by solving first an augmented, strictly parabolic equation and then gauge transforming the solution to a solution of the Yang-Mills heat equation itself. The gauge functions needed to carry out this procedure lie in the critical gauge group of Sobolev regularity three halves, which is a complete topological group in a natural metric but is not a Hilbert Lie group. The nature of this group must be understood in order to carry out the reconstruction procedure. Solutions to the Yang-Mills heat equation are shown to be strong solutions modulo these gauge functions. Energy inequalities and Neumann domination inequalities are used to establish needed initial behavior properties of solutions to the augmented equation.


2018 ◽  
Vol 96 (9) ◽  
pp. 969-977
Author(s):  
Haizhao Zhi

Lyra geometry is a conformal geometry that originated from Weyl geometry. In this article, we derive the exterior field equation under a spherically symmetric gauge function x0(r) and metric in Lyra geometry. When we impose a specific form of the gauge function x0(r), the radial differential equation of the metric component g00 will possess an irregular singular point (ISP) at r = 0. Moreover, we can apply the method of dominant balance to get the asymptotic behavior of the new space–time solution. The significance of this work is that we can use a series of smooth gauge functions x0(r) to modulate the degree of divergence of the singularity at r = 0, which will become a naked singularity under certain conditions. Furthermore, we investigate the physical meaning of this novel behavior of space–time in Lyra geometry and find out that no spaceship with finite integrated acceleration can arrive at this singularity at r = 0. The physical meaning of the gauge function and integrability is also discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Z. E. Musielak ◽  
N. Davachi ◽  
M. Rosario-Franco

A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.


Sign in / Sign up

Export Citation Format

Share Document