scholarly journals Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Z. E. Musielak ◽  
N. Davachi ◽  
M. Rosario-Franco

A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.

2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Osama Moaaz ◽  
Choonkil Park ◽  
Elmetwally M. Elabbasy ◽  
Waed Muhsin

AbstractIn this work, we create new oscillation conditions for solutions of second-order differential equations with continuous delay. The new criteria were created based on Riccati transformation technique and comparison principles. Furthermore, we obtain iterative criteria that can be applied even when the other criteria fail. The results obtained in this paper improve and extend the relevant previous results as illustrated by examples.


SeMA Journal ◽  
2021 ◽  
Author(s):  
Rosana Rodríguez-López ◽  
Rakesh Tiwari

AbstractThe aim of this paper is to introduce a new class of mixed contractions which allow to revise and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We also provide an example corresponding to this class of mappings and show how the new fixed point result relates to the above-mentioned result in [6]. Further, we present an application to the solvability of a two-point boundary value problem for second order differential equations.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1323
Author(s):  
Shyam Sundar Santra ◽  
Rami Ahmad El-Nabulsi ◽  
Khaled Mohamed Khedher

In this work, we obtained new sufficient and necessary conditions for the oscillation of second-order differential equations with mixed and multiple delays under a canonical operator. Our methods could be applicable to find the sufficient and necessary conditions for any neutral differential equations. Furthermore, we proved the validity of the obtained results via particular examples. At the end of the paper, we provide the future scope of this study.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2006 ◽  
Vol 49 (2) ◽  
pp. 170-184
Author(s):  
Richard Atkins

AbstractThis paper investigates the relationship between a system of differential equations and the underlying geometry associated with it. The geometry of a surface determines shortest paths, or geodesics connecting nearby points, which are defined as the solutions to a pair of second-order differential equations: the Euler–Lagrange equations of the metric. We ask when the converse holds, that is, when solutions to a system of differential equations reveals an underlying geometry. Specifically, when may the solutions to a given pair of second order ordinary differential equations d2y1/dt2 = f (y, ẏ, t) and d2y2/dt2 = g(y, ẏ, t) be reparameterized by t → T(y, t) so as to give locally the geodesics of a Euclidean space? Our approach is based upon Cartan's method of equivalence. In the second part of the paper, the equivalence problem is solved for a generic pair of second order ordinary differential equations of the above form revealing the existence of 24 invariant functions.


Sign in / Sign up

Export Citation Format

Share Document