Stress distribution on short implants with different designs: a photoelastic analysis

2016 ◽  
Vol 41 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Marcelo Coelho Goiato ◽  
Rodrigo Antonio de Medeiros ◽  
Mariana Vilela Sônego ◽  
Taynara Maria Toito de Lima ◽  
Aldiéris Alves Pesqueira ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Evandro Portela Figueirêdo ◽  
Eder Alberto Sigua-Rodriguez ◽  
Marcele Jardim Pimentel ◽  
Ana Regina Oliveira Moreira ◽  
Mauro Antônio de Arruda Nóbilo ◽  
...  

The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5×11 mm) (Neodent), II: long implant (5×11 mm) (Bicon), III: short implant (5×6 mm) (Neodent), and IV: short implants (5×6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α=0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P>0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.


2015 ◽  
Vol 41 (3) ◽  
pp. 258-263 ◽  
Author(s):  
Angélica Castro Pimentel ◽  
Marcello Roberto Manzi ◽  
Cristiane Ibanhês Polo ◽  
Claudio Luiz Sendyk ◽  
Maria da Graça Naclério-Homem ◽  
...  

The aim of this study was to evaluate the stress distribution of different retention systems (screwed, cemented, and mixed) in 5-unit implant-supported fixed partial dentures through the photoelasticity method. Twenty standardized titanium suprastructures were manufactured, of which 5 were screw retained, 5 were cement retained, and 10 were mixed (with an alternating sequence of abutments), each supported by 5 external hexagon (4.0 mm × 11.5 mm) implants. A circular polariscope was used, and an axial compressive load of 100 N was applied on a universal testing machine. The results were photographed and qualitatively analyzed. We observed the formation of isochromatic fringes as a result of the stresses generated around the implant after installation of the different suprastructures and after the application of a compressive axial load of 100 N. We conclude that a lack of passive adaptation was observed in all suprastructures with the formation of low-magnitude stress in some implants. When cemented and mixed suprastructures were subjected to a compressive load, they displayed lower levels of stress distribution and lower intensity fringes compared to the screwed prosthesis.


Orthopedics ◽  
1992 ◽  
Vol 15 (12) ◽  
pp. 1445-1450
Author(s):  
Joo-Chul Ihn ◽  
Myun-Whan Ahn ◽  
Dae-Mang Kim

2014 ◽  
Vol 40 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Eduardo Piza Pellizzer ◽  
Rafael Imai Carli ◽  
Rosse Mary Falcón-Antenucci ◽  
Fellippo Ramos Verri ◽  
Marcelo Coelho Goiato ◽  
...  

The aim of this study was to evaluate stress distribution with different implant systems through photoelasticity. Five models were fabricated with photoelastic resin PL-2. Each model was composed of a block of photoelastic resin (10 × 40 × 45 mm) with an implant and a healing abutment: model 1, internal hexagon implant (4.0 × 10 mm; Conect AR, Conexão, São Paulo, Brazil); model 2, Morse taper/internal octagon implant (4.1 × 10 mm; Standard, Straumann ITI, Andover, Mass); model 3, Morse taper implant (4.0 × 10 mm; AR Morse, Conexão); model 4, locking taper implant (4.0 × 11 mm; Bicon, Boston, Mass); model 5, external hexagon implant (4.0 × 10 mm; Master Screw, Conexão). Axial and oblique load (45°) of 150 N were applied by a universal testing machine (EMIC-DL 3000), and a circular polariscope was used to visualize the stress. The results were photographed and analyzed qualitatively using Adobe Photoshop software. For the axial load, the greatest stress concentration was exhibited in the cervical and apical thirds. However, the highest number of isochromatic fringes was observed in the implant apex and in the cervical adjacent to the load direction in all models for the oblique load. Model 2 (Morse taper, internal octagon, Straumann ITI) presented the lowest stress concentration, while model 5 (external hexagon, Master Screw, Conexão) exhibited the greatest stress. It was concluded that Morse taper implants presented a more favorable stress distribution among the test groups. The external hexagon implant showed the highest stress concentration. Oblique load generated the highest stress in all models analyzed.


2019 ◽  
Vol 17 (4) ◽  
pp. 228080001988264
Author(s):  
Ozgun Yusuf Ozyilmaz ◽  
Filiz Aykent ◽  
Gulsum Sayin Ozel

Introduction: The aim of this study was to evaluate the effect of different heights of attachment and mucosa thicknesses on the stress distribution of two implant-retained mandibular overdenture designs under loading using the photoelastic stress analysis method. Materials and methods: Six photoelastic models of an edentulous mandibula were fabricated with two solitary implants that were placed in the canine regions. The attachment systems studied were ball and locator stud attachments. Both the ball and locator groups included three models that had different residual ridge heights so as to provide different mucosa thicknesses (1 mm–1 mm, 1 mm–2 mm, 1 mm–4 mm). A static vertical force of 135 N was applied unilaterally (each on the right then the left side) to the central fossa of the first molars. Models were positioned in the field of a circular polariscope to observe the distribution of isochromatic fringes around the implants and the interimplant areas under loading. The photoelastic stress fringes were monitored and recorded photographically. Results: The ball attachment groups showed higher stress values than did the locator groups under loading. Both attachment systems produced the lowest stress values in stimulated 1 mm–1 mm mucosa thickness models. The models with 1 mm–2 mm mucosa thicknesses showed higher stress values than did other models for both attachment systems. The highest stress value observed around both attachment systems was the moderate level in all test models. Conclusion: In different height mucosa thicknesses, locator attachment models distributed the load to the other side of the implant and its surrounding tissue, whereas the ball attachment did not. Regardless of mucosal thickness and attachment type, the implant on the loading side was subjected to the highest stress concentration.


Sign in / Sign up

Export Citation Format

Share Document