Gene Transfer and Cauliflower Mosaic Virus Promoter 35S Activity in Mammalian Cells

2006 ◽  
Vol 41 (4) ◽  
pp. 437-449 ◽  
Author(s):  
ANDREA PAPARINI ◽  
VINCENZO ROMANO-SPICA
HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 620e-620 ◽  
Author(s):  
R.J. Griesbach

The apical meristems of Calanthe orchid embryos were exposed to 1 mg/ml pBI-121 DNA in an electric field. pBI-121 contains the GUS marker gene glucoronidase under the control of the 35 S cauliflower mosaic virus promoter. A pipette containing 0.3% agarose and acetate buffer containing the DNA was placed on one end of the embryo; while the opposite end was in contact with a pipette containing only buffer and agarose. Uptake of the DNA into the meristem was monitored by 4′6-diamidino-2-phenylindole (DAPI) fluorescence. Optimal uptake occurred after 10 min of electrophoresis at 10 volts and 0.5 milliamps. Under these conditions, 55% of the embryos survived the treatment and 57% of those which survived were transformed as measured by GUS-positive staining. Leaves from 6 month old plants which developed from the transformed embryos expressed specific patterns of GUS staining.


Author(s):  
Roberto Alers-Velazquez ◽  
Sushant Khandekar ◽  
Clare Muller ◽  
Jennifer Boldt ◽  
Scott Leisner

AbstractLower temperatures delayed development of systemic symptoms by Cauliflower mosaic virus (CaMV) in two different plant hosts. However, lower temperature exposure increased CaMV nucleic acid levels in leaves of systemically-infected turnips. Furthermore, lower temperature altered the formation of aggregates formed by the CaMV major inclusion body (IB) protein, P6. Finally, lower temperature altered the architecture of the actin cytoskeleton. These data may suggest that lower temperatures alter the actin cytoskeleton, facilitating the formation of larger IBs that hold on to their internal virions more strongly than small ones, impairing virus particle release and causing a delay in systemic infection.


2002 ◽  
Vol 15 (10) ◽  
pp. 1050-1057 ◽  
Author(s):  
Yongzhong Li ◽  
Scott M. Leisner

The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral propagation. It is likely that at least some of these functions require P6 self-association. The work described here was performed to confirm that P6 self-associates and to identify domains involved in this interaction. Yeast two-hybrid analyses indicated that full-length P6 self-associates and that this interaction is specific. Additional analyses indicated that at least four independent domains bind to full-length P6. When a central domain (termed domain D3) was removed, these interactions were abolished. However, this deleted P6 was able to bind to the full-length wild-type protein and to isolated domain D3. Viruses lacking domain D3 were incapable of producing a systemic infection. Isolated domain D3 was capable of binding to at least two of the other domains but was unable to self-associate. This suggests that domain D3 facilitates P6 self-association by binding to the other domains but not itself. The presence of multiple domains involved in P6 self-association may help explain the ability of this protein to form the intracellular inclusions characteristic of caulimoviruses.


Virology ◽  
1972 ◽  
Vol 47 (3) ◽  
pp. 694-700 ◽  
Author(s):  
G.G. Conti ◽  
G. Vegetti ◽  
Maria Bassi ◽  
M.Augusta Favali

Virology ◽  
1989 ◽  
Vol 172 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Rebecca Stratford ◽  
Simon N. Covey

Sign in / Sign up

Export Citation Format

Share Document