In vivoassessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated fromCurcuma zedoariasuppresses wheat leaf rust

2017 ◽  
Vol 53 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Jae Woo Han ◽  
Sang Hee Shim ◽  
Kyoung Soo Jang ◽  
Yong Ho Choi ◽  
Quang Le Dang ◽  
...  
2009 ◽  
Vol 75 (2) ◽  
pp. 431
Author(s):  
M.E. Cawood ◽  
J.C. Pretorius ◽  
A.J. Van der Westhuizen

2017 ◽  
Vol 4 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Yasser M. Shabana ◽  
Mohamed E. Abdalla ◽  
Atef A. Shahin ◽  
Mohammed M. El-Sawy ◽  
Ibrahim S. Draz ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3696
Author(s):  
Ramin Heidarian Dehkordi ◽  
Moussa El Jarroudi ◽  
Louis Kouadio ◽  
Jeroen Meersmans ◽  
Marco Beyer

During the past decade, imagery data acquired from unmanned aerial vehicles (UAVs), thanks to their high spatial, spectral, and temporal resolutions, have attracted increasing attention for discriminating healthy from diseased plants and monitoring the progress of such plant diseases in fields. Despite the well-documented usage of UAV-based hyperspectral remote sensing for discriminating healthy and diseased plant areas, employing red-green-blue (RGB) imagery for a similar purpose has yet to be fully investigated. This study aims at evaluating UAV-based RGB imagery to discriminate healthy plants from those infected by stripe and wheat leaf rusts in winter wheat (Triticum aestivum L.), with a focus on implementing an expert system to assist growers in improved disease management. RGB images were acquired at four representative wheat-producing sites in the Grand Duchy of Luxembourg. Diseased leaf areas were determined based on the digital numbers (DNs) of green and red spectral bands for wheat stripe rust (WSR), and the combination of DNs of green, red, and blue spectral bands for wheat leaf rust (WLR). WSR and WLR caused alterations in the typical reflectance spectra of wheat plants between the green and red spectral channels. Overall, good agreements between UAV-based estimates and observations were found for canopy cover, WSR, and WLR severities, with statistically significant correlations (p-value (Kendall) < 0.0001). Correlation coefficients were 0.92, 0.96, and 0.86 for WSR severity, WLR severity, and canopy cover, respectively. While the estimation of canopy cover was most often less accurate (correlation coefficients < 0.20), WSR and WLR infected leaf areas were identified satisfactorily using the RGB imagery-derived indices during the critical period (i.e., stem elongation and booting stages) for efficacious fungicide application, while disease severities were also quantified accurately over the same period. Using such a UAV-based RGB imagery method for monitoring fungal foliar diseases throughout the cropping season can help to identify any new disease outbreak and efficaciously control its spread.


2018 ◽  
Vol 2 (1) ◽  
pp. 66-67
Author(s):  
Amal Elkhwaga ◽  
Abdelnaser Elzaawely ◽  
Ibrahim Draz ◽  
Abdelwahab Ismail ◽  
Hassan El-Zahaby

2008 ◽  
Vol 177 (4) ◽  
pp. 1001-1011 ◽  
Author(s):  
Christian Lannou ◽  
Samuel Soubeyrand ◽  
Lise Frezal ◽  
Joël Chadœuf
Keyword(s):  

1984 ◽  
Vol 64 (3) ◽  
pp. 511-519 ◽  
Author(s):  
G. L. C. MUSA ◽  
P. L. DYCK ◽  
D. J. SAMBORSKI

The inheritance of seedling resistance to isolate RLR 213/78 of rye leaf rust (Puccinia recondita f. sp. secalis) and race 30 of wheat leaf rust (P. recondita f. sp. tritici Rob.) was investigated in six inbred lines of rye (Secale cereale). Inbred line UM8116 was used as the susceptible parent in crosses. Inbred lines UM8003, UM8071 and UM8301 each have a single gene and UM8336 and UM8340 each have two genes for resistance to rye leaf rust. For resistance to wheat leaf rust UM8071 has a single gene, UM8003 and UM8340 each have two genes and UM8301 and UM8336 each have three genes. UM8295 is heterogeneous for reaction to both rusts. One of the genes in UM8340 may condition resistance to both rusts. The genes for resistance to RLR 213/78 appear to be independently inherited while some of the genes conferring resistance to race 30 may be identical or very closely linked. The potential of rye as a source of disease resistance for wheat and triticale improvement is discussed.Key words: Secale cereale, disease resistance, wheat leaf rust


2011 ◽  
Vol 79 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Christoph Römer ◽  
Kathrin Bürling ◽  
Mauricio Hunsche ◽  
Till Rumpf ◽  
Georg Noga ◽  
...  

2013 ◽  
Vol 41 (2) ◽  
pp. 121-133
Author(s):  
Nour El-Din Soliman ◽  
Magdy Saber ◽  
Alaa Abd-Elaziz ◽  
Ibrahim Imbabi

2012 ◽  
pp. 33-62 ◽  
Author(s):  
B. McCallum ◽  
C. Hiebert ◽  
J. Huerta-Espino ◽  
S. Cloutier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document