scholarly journals The Well-Posedness Issue in Sobolev Spaces for Hyperbolic Systems with Zygmund-Type Coefficients

2015 ◽  
Vol 40 (11) ◽  
pp. 2082-2121 ◽  
Author(s):  
Ferruccio Colombini ◽  
Daniele Del Santo ◽  
Francesco Fanelli ◽  
Guy Métivier
Author(s):  
Anca-Voichita Matioc ◽  
Bogdan-Vasile Matioc

AbstractIn this paper we establish the well-posedness of the Muskat problem with surface tension and equal viscosities in the subcritical Sobolev spaces $$W^s_p(\mathbb {R})$$ W p s ( R ) , where $${p\in (1,2]}$$ p ∈ ( 1 , 2 ] and $${s\in (1+1/p,2)}$$ s ∈ ( 1 + 1 / p , 2 ) . This is achieved by showing that the mathematical model can be formulated as a quasilinear parabolic evolution problem in $$W^{\overline{s}-2}_p(\mathbb {R})$$ W p s ¯ - 2 ( R ) , where $${\overline{s}\in (1+1/p,s)}$$ s ¯ ∈ ( 1 + 1 / p , s ) . Moreover, we prove that the solutions become instantly smooth and we provide a criterion for the global existence of solutions.


2000 ◽  
Vol 09 (01) ◽  
pp. 13-34 ◽  
Author(s):  
GEN YONEDA ◽  
HISA-AKI SHINKAI

Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.


2018 ◽  
Vol 372 (3-4) ◽  
pp. 1597-1629
Author(s):  
Claudia Garetto ◽  
Christian Jäh ◽  
Michael Ruzhansky

2010 ◽  
Vol 20 (01) ◽  
pp. 95-120 ◽  
Author(s):  
RICARDO G. DURÁN ◽  
FERNANDO LÓPEZ GARCÍA

If Ω ⊂ ℝn is a bounded domain, the existence of solutions [Formula: see text] of div u = f for f ∈ L2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution [Formula: see text], where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution [Formula: see text] for some r < 2 depending on the power of the cusp.


Sign in / Sign up

Export Citation Format

Share Document