Optimal rate and schedule of nitrogen fertilizer application for enhanced yield and nitrogen use efficiency in dry-seeded rice in north-western India

2017 ◽  
Vol 64 (2) ◽  
pp. 196-207 ◽  
Author(s):  
Harmit Singh Thind ◽  
Yadvinder- Singh ◽  
Sandeep Sharma ◽  
Deepak Goyal ◽  
Varinderpal- Singh ◽  
...  
2022 ◽  
Vol 278 ◽  
pp. 108430
Author(s):  
Olusegun Idowu ◽  
Yuanzheng Wang ◽  
Koki Homma ◽  
Tetsuya Nakazaki ◽  
Zhengjin Xu ◽  
...  

Author(s):  
Tolera Abera Goshu ◽  
Dagne Wegary Gissa ◽  
Tolessa Debele Dalessa

Maize (Zea mays L.) is the most widely grown important crop in mid altitude areas of intensive maize-based cropping system of western Ethiopia. Agronomic management is the most important input for getting potential yield and high net returns in hybrid maize production. A field experiment was carried out on farmers’ field to find out the effect of varieties (four maize) and nitrogen fertilizer rate (55, 110 kg N ha-1) with one control on yield components and nitrogen use efficiency of different maize varieties in 2013 and 2014 cropping season. It was laid with randomized complete block design in factorial arrangement with three replications. Mean grain yield, thousand seed weight, dry biomass and harvest index of maize varieties were significantly differed among farms and varieties of maize. Application of nitrogen fertilizer rates was significantly increased mean grain yield maize varieties. Interaction of maize varieties with nitrogen fertilizer rates was significantly affected all yield components of maize varieties. Application half and full recommended nitrogen fertilizer gave mean grain yield advantages of 31 and 41 % over control maize varieties planted without nitrogen application. Maize varieties producing higher mean grain yield was also giving higher mean dry biomass. Mean nitrogen up take was varied from 225 to 357 kg ha-1 among varieties of maize. Higher agronomic efficiency of all maize varieties was obtained from maize planted with application half recommended nitrogen fertilizer compared to full recommend. Agronomic efficiency was ranged from 18 to 33 produced among maize varieties. Significantly higher nitrogen up take efficiency of maize varieties was achieved from maize planted with full recommended nitrogen fertilizer application. Considerably higher nitrogen use efficiency of maize varieties was realized from all maize varieties planted with application half recommended nitrogen fertilizer. Application of half recommended nitrogen fertilizer was gave 32 % fertilizer N use efficiency advantage as compared to full recommended nitrogen fertilizer. Maize varieties BH-661>BH-660> BH-543>BH-540>BH-140 were desirable varieties for further promotion work and use by smallholder farmers in mid altitude area of western Ethiopia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


Sign in / Sign up

Export Citation Format

Share Document