Climate variability and urban food security in sub-Saharan Africa: lessons from Zambia using an asset-based adaptation framework

2014 ◽  
Vol 97 (3) ◽  
pp. 243-263 ◽  
Author(s):  
Danny Simatele ◽  
Munacinga Simatele
2020 ◽  
Vol 114 ◽  
pp. 102131 ◽  
Author(s):  
Jordan Blekking ◽  
Kurt Waldman ◽  
Cascade Tuholske ◽  
Tom Evans

Food Security ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417-431 ◽  
Author(s):  
Cascade Tuholske ◽  
Kwaw Andam ◽  
Jordan Blekking ◽  
Tom Evans ◽  
Kelly Caylor

AbstractThe urban population in Sub-Saharan Africa is projected to expand by nearly 800 million people in the next 30 years. How this rapid urban transition is affecting household-level urban food security, and reverberating into broader food systems, is poorly understood. To fill this gap, we use data from a 2017 survey (n = 668) of low- and middle-income residents of Accra, Ghana, to characterize and compare the predictors of household-level food security using three established metrics: the Household Food Insecurity Access Scale (HFIAS); the Household Food Insecurity Access Prevalence (HFIAP); and the Food Consumption Score (FCS). According to HFIAP, 70% of sampled households are food insecure, but only 2% fall below acceptable thresholds measured by FCS. Only one household reported sourcing food from modern supermarkets and fewer than 3% produce food for consumption through gardening, farming, or fishing. Instead, households rely on purchased food from traditional markets, local stalls and kiosks, and street hawkers. Results from a suite of general linear models show that household assets, education, and demographic characteristics are significantly associated with food security outcomes according to HFIAS and HFIAP. The poor correlation and weak model agreement between dietary recall such as FCS, and experience-based food security metrics, like HFIAS and HFIAP, highlight limitations of employing historically rural-centric food security measurement approaches within the urban context. Given that Sub-Saharan Africa’s future is urban, our results add empirical evidence in support of the growing chorus of scholars advocating for comprehensive urban-oriented food security research and policy agendas across Sub-Saharan Africa.


2005 ◽  
Vol 360 (1463) ◽  
pp. 2169-2182 ◽  
Author(s):  
Menghestab Haile

Although considerable achievements in the global reduction of hunger and poverty have been made, progress in Africa so far has been very limited. At present, a third of the African population faces widespread hunger and chronic malnutrition and is exposed to a constant threat of acute food crisis and famine. The most affected are rural households whose livelihood is heavily dependent on traditional rainfed agriculture. Rainfall plays a major role in determining agricultural production and hence the economic and social well being of rural communities. The rainfall pattern in sub-Saharan Africa is influenced by large-scale intra-seasonal and inter-annual climate variability including occasional El Niño events in the tropical Pacific resulting in frequent extreme weather event such as droughts and floods that reduce agricultural outputs resulting in severe food shortages. Households and communities facing acute food shortages are forced to adopt coping strategies to meet the immediate food requirements of their families. These extreme responses may have adverse long-term impacts on households' ability to have sustainable access to food as well as the environment. The HIV/AIDS crisis has also had adverse impacts on food production activities on the continent. In the absence of safety nets and appropriate financial support mechanisms, humanitarian aid is required to enable households effectively cope with emergencies and manage their limited resources more efficiently. Timely and appropriate humanitarian aid will provide households with opportunities to engage in productive and sustainable livelihood strategies. Investments in poverty reduction efforts would have better impact if complemented with timely and predictable response mechanisms that would ensure the protection of livelihoods during crisis periods whether weather or conflict-related. With an improved understanding of climate variability including El Niño, the implications of weather patterns for the food security and vulnerability of rural communities have become more predictable and can be monitored effectively. The purpose of this paper is to investigate how current advances in the understanding of climate variability, weather patterns and food security could contribute to improved humanitarian decision-making. The paper will propose new approaches for triggering humanitarian responses to weather-induced food crises.


2021 ◽  
Vol 775 ◽  
pp. 145646
Author(s):  
Elizabeth A. Mack ◽  
Erin Bunting ◽  
James Herndon ◽  
Richard A. Marcantonio ◽  
Amanda Ross ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 260
Author(s):  
Habibu Mugerwa ◽  
Peter Sseruwagi ◽  
John Colvin ◽  
Susan Seal

In East Africa, the prevalent Bemisia tabaci whiteflies on the food security crop cassava are classified as sub-Saharan Africa (SSA) species. Economically damaging cassava whitefly populations were associated with the SSA2 species in the 1990s, but more recently, it has been to SSA1 species. To investigate whether biological traits (number of first instar nymphs, emerged adults, proportion of females in progeny and development time) of the cassava whitefly species are significant drivers of the observed field abundance, our study determined the development of SSA1 sub-group (SG) 1 (5 populations), SG2 (5 populations), SG3 (1 population) and SSA2 (1 population) on cassava and eggplant under laboratory conditions. SSA1-(SG1-SG2) and SSA2 populations’ development traits were similar. Regardless of the host plant, SSA1-SG2 populations had the highest number of first instar nymphs (60.6 ± 3.4) and emerged adults (50.9 ± 3.6), followed by SSA1-SG1 (55.5 ± 3.2 and 44.6 ± 3.3), SSA2 (45.8 ± 5.7 and 32.6 ± 5.1) and the lowest were SSA1-SG3 (34.2 ± 6.1 and 32.0 ± 7.1) populations. SSA1-SG3 population had the shortest egg–adult emergence development time (26.7 days), followed by SSA1-SG1 (29.1 days), SSA1-SG2 (29.6 days) and SSA2 (32.2 days). Regardless of the whitefly population, development time was significantly shorter on eggplant (25.1 ± 0.9 days) than cassava (34.6 ± 1.0 days). These results support that SSA1-(SG1-SG2) and SSA2 B. tabaci can become highly abundant on cassava, with their species classification alone not correlating with observed abundance and prevalence.


1994 ◽  
Vol 23 (3) ◽  
pp. 197-205 ◽  
Author(s):  
Felix Izu Nweke

Cassava makes an important contribution to improving food security and rural incomes in sub-Saharan Africa, as it is tolerant of drought and poor soil and its cultivation does not require much labour. However, the fresh roots are bulky and perishable and need to be processed before they can be marketed; processing also removes the cyanogens which make many varieties poisonous in their raw form. Cassava roots are turned into granules, flours, pastes and chips, with a wide range of flavours and appearances for different areas and markets. Many different processing techniques are used, some of which make intensive use of fuelwood while others require a plentiful water supply. These requirements, as well as the need for a good transport and marketing infrastructure, limit the expansion of cassava production in sub-Saharan Africa, but technical solutions are being found.


2017 ◽  
Vol 5 (1) ◽  
pp. 50
Author(s):  
Kalifa TRAORE ◽  
Daouda SIDIBE ◽  
Harouna COULIBALY

Climate variability and change are recognized as the greatest challenge to crop production and food security in sub-Saharan Africa. This work assesses farmers’ perception on the contribution of improved varieties of sorghum and millet in the search for food security in Cinzana rural commune of Mali in the current context of climate change.The methodology was based on focus group surveys with both, the decentralized technical services, administrative and municipal authorities, NGOs, farmer organizations and producers but also farmer exchanges visits on improved varieties tested in farmer’s field.The result shows that climate change is described by the majority of farmers (87%) as decrease in rainfall amount and length of rainy seasons, high increases in temperature and high deforestation and water scarcity. Unpredictability of climate, (80%), drought (70%) and heavy rain (65%) occurrence were identified as major perception of farmers on risks in climate for crop production and soil degradation. After farmers’ study tour, 80% of the participants mentioned a better growth of plants and increase of soil moisture with the use of contour ridges tillage as a water conservation technology. Adapted cycle (55%) and higher yield (37%) of improved varieties were farmer’s main drivers for adoption of improved millet and sorghum varieties.The study revealed that local farmers have substantial knowledge on climate variabilities and risks and also are aware of some adaptation strategies. However, for wide scale adoption of effective strategies, capacity strengthening appeared a prerequisite.


Sign in / Sign up

Export Citation Format

Share Document