heavy rain
Recently Published Documents


TOTAL DOCUMENTS

1406
(FIVE YEARS 520)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 9 ◽  
Author(s):  
Chunyan Bao ◽  
Lingtao Zhan ◽  
Yingjie Xia ◽  
Yongliang Huang ◽  
Zhenxing Zhao

The creep slope is a dynamic development process, from stable deformation to instability failure. For the slope with sliding zone, it generally creeps along the sliding zone. If the sliding zone controlling the slope sliding does not have obvious displacement, and the slope has unexpected instability without warning, the harm and potential safety hazard are often much greater than the visible creep. Studying the development trend of this kind of landslide is of great significance to slope treatment and landslide early warning. Taking Xiashan village landslide in Huishan Town, Xinchang County, Zhejiang Province as an example, the landslide point was determined by numerical simulation in 2006. Generally, the landslide is a typical long-term slow deformation towards the free direction. Based on a new round of investigation and monitoring, this paper shows that there are signs of creeping on the surface of the landslide since 2003, and there is no creep on the deep sliding surface. The joint fissures in the landslide area are relatively developed, and rainfall infiltration will soften the soft rock and soil layer and greatly reduce its stability. This paper collects and arranges the rainfall data of the landslide area in recent 30 years, constructs the slope finite element model considering rainfall conditions through ANSYS finite element software, and carries out numerical simulation stability analysis. The results show that if cracks appear below or above the slope’s sliding surface, or are artificially damaged, the sliding surface may develop into weak cracks. Then, the plastic zone of penetration is offset; In the case of heavy rain, the slope can unload itself under the action of rainfall. At this time, the slope was unstable and the landslide happened suddenly.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 219
Author(s):  
Jongsung Kim ◽  
Donghyun Kim ◽  
Myungjin Lee ◽  
Heechan Han ◽  
Hung Soo Kim

For risk assessment, two methods, quantitative risk assessment and qualitative risk assessment, are used. In this study, we identified the regional risk level for a disaster-prevention plan for an overall area at the national level using qualitative risk assessment. To overcome the limitations of previous studies, a heavy rain damage risk index (HDRI) was proposed by clarifying the framework and using the indicator selection principle. Using historical damage data, we also carried out hierarchical cluster analysis to identify the major damage types that were not considered in previous risk-assessment studies. The result of the risk-level analysis revealed that risk levels are relatively high in some cities in South Korea where heavy rain damage occurs frequently or is severe. Five causes of damage were derived from this study—A: landslides, B: river inundation, C: poor drainage in arable areas, D: rapid water velocity, and E: inundation in urban lowlands. Finally, a prevention project was proposed considering regional risk level and damage type in this study. Our results can be used when macroscopically planning mid- to long-term disaster prevention projects.


Author(s):  
Mana Sugimura ◽  
Odgerel Chimed-Ochir ◽  
Yui Yumiya ◽  
Akihiro Taji ◽  
Eisaku Kishita ◽  
...  

Abstract Introduction: Japan recently experienced two major heavy rain disasters: the West Japan heavy rain disaster in July 2018 and the Kumamoto heavy rain disaster in July 2020. Between the occurrences of these two disasters, Japan began experiencing the wave of the coronavirus disease 2019 (COVID-19) pandemic, providing a unique opportunity to compare the incidence of acute respiratory infection (ARI) between the two disaster responses under distinct conditions. Sources for Information: The data were collected by using the standard disaster medical reporting system used in Japan, so-called the Japan-Surveillance in Post-Extreme Emergencies and Disasters (J-SPEED), which reports number and types of patients treated by Emergency Medical Teams (EMTs). Data for ARI were extracted from daily aggregated data on the J-SPEED form and the frequency of ARI in two disasters was compared. Observation: Acute respiratory infection in the West Japan heavy rain that occurred in the absence of COVID-19 and in the Kumamoto heavy rain that occurred in the presence of COVID-19 were responsible for 5.4% and 1.2% of the total consultation, respectively (P <.001). Analysis of Observation and Conclusion: Between the occurrence of these two disasters, Japan implemented COVID-19 preventive measures on a personal and organizational level, such as wearing masks, disinfecting hands, maintaining social distance, improving room ventilation, and screening people who entered evacuation centers by using hygiene management checklists. By following the basic prevention measures stated above, ARI can be significantly reduced during a disaster.


Author(s):  
Stephan Hoffmann ◽  
Marian Schönauer ◽  
Joachim Heppelmann ◽  
Antti Asikainen ◽  
Emmanuel Cacot ◽  
...  

Abstract Purpose of Review Mechanized logging operations with ground-based equipment commonly represent European production forestry but are well-known to potentially cause soil impacts through various forms of soil disturbances, especially on wet soils with low bearing capacity. In times of changing climate, with shorter periods of frozen soils, heavy rain fall events in spring and autumn and frequent needs for salvage logging, forestry stakeholders face increasingly unfavourable conditions to conduct low-impact operations. Thus, more than ever, planning tools such as trafficability maps are required to ensure efficient forest operations at reduced environmental impact. This paper aims to describe the status quo of existence and implementation of such tools applied in forest operations across Europe. In addition, focus is given to the availability and accessibility of data relevant for such predictions. Recent Findings A commonly identified method to support the planning and execution of machine-based operations is given by the prediction of areas with low bearing capacity due to wet soil conditions. Both the topographic wetness index (TWI) and the depth-to-water algorithm (DTW) are used to identify wet areas and to produce trafficability maps, based on spatial information. Summary The required input data is commonly available among governmental institutions and in some countries already further processed to have topography-derived trafficability maps and respective enabling technologies at hand. Particularly the Nordic countries are ahead within this process and currently pave the way to further transfer static trafficability maps into dynamic ones, including additional site-specific information received from detailed forest inventories. Yet, it is hoped that a broader adoption of these information by forest managers throughout Europe will take place to enhance sustainable forest operations.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Rocktim Ramen Das ◽  
Haruka Wada ◽  
Giovanni Diego Masucci ◽  
Tanya Singh ◽  
Parviz Tavakoli-Kolour ◽  
...  

The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including from Okinawa, southern Japan. In this study, we collected annual prevalence data of Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs) affecting the encrusting form of genus Montipora within the shallow reefs of the subtropical Sesoko Island (off the central west coast of Okinawajima Island) from summer to autumn for four years (2017 to 2020). In 2020 Montipora percent coverage and colony count were also assessed. Generalized Linear Models (GLM) were used to understand the spatial and temporal variation of both BBD and GAs in the nearshore (NE) and reef edge (RE) sites, which revealed higher probability of BBD occurrence in RE sites. BBD prevalence was significantly higher in 2017 in some sites than all other years with site S12 having significant higher probability during all four surveyed years. In terms of GAs, certain sites in 2020 had higher probability of occurrence than during the other years. While the general trend of GAs increased from 2017 to 2020, it was observed to be non-fatal to colonies. In both diseases, the interaction between sites and years was significant. We also observed certain BBD-infected colonies escaping complete mortality. BBD progression rates were monitored in 2020 at site S4, and progression was related to seawater temperatures and was suppressed during periods of heavy rain and large strong typhoons. Our results suggest that higher BBD progression rates are linked with high sea water temperatures (SST > bleaching threshold SST) and higher light levels (> 1400 µmol m−2 s−1), indicating the need for further controlled laboratory experiments. The current research will help form the basis for continued future research into these diseases and their causes in Okinawa and the Indo-Pacific Ocean.


MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 153-162
Author(s):  
C. POORNACHANDRA RAO ◽  
P.V. Rama RAO

Using data of 84 Years, the influence of depressions and cyclonic storms on the rainfall over Eastern Ghats in Andhra Pradesh is studied. The portions of the Ghats, which receive heavy rains due to a depression or cyclonic storm are identified and the rainfall distribution in corresponding months is studied.    The results show that the depressions/cyclonic storms crossing not only the coastal parts of AndhraPradesh but also those of south Orissa north and TamilNadu can cause heavy rain over the Ghats in Andhra Pradesh.


2021 ◽  
Vol 16 (3) ◽  
pp. 898-907
Author(s):  
S. KOKILAVANI S. KOKILAVANI ◽  
SP. Ramanathan SP. Ramanathan ◽  
GA. Dheebakaran ◽  
N.K. Sathyamoorthy ◽  
B. Arthirani B. Arthirani ◽  
...  

Understanding the pattern of regional climatic extremes is essential for creating an important adaptation measure to safeguard farmers from monsoon tantrums. This paper focuses on the rainfall variability and intensity for spatially different locations of Tamil Nadu. The daily rainfall data over a period of 30 years (1990-2019) for the study locations were collected from the constituent research centres of TNAU. The results indicated that an increasing trend in SWM rainfall was observed in Coimbatore (209.3 to 300.6mm), Ooty (681.4 to 703.1mm), Aduthurai (227.8 to 320.6mm), Kovilpatti (132.8 to 141.3 mm) while the decreasing trend was observed in rest of the places. A decreasing trend was reported in general for all the places during NEM. The decreasing trend in the number of rainy days was registered in Kovilpatti, Virudhunagar and Killikulam that exhibits an alert in modifying the crop planning programme in those areas. The frequency of rainfall intensity revealed that except Ooty, the number of Heavy Rain (HR) to VHR(VHR) was found to be meagre to absent in most of the study locations.


MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 424-426
Author(s):  
N. B. THADE ◽  
V. R. MISHRA ◽  
D. S. DESAI
Keyword(s):  

Abstract Warm-sector heavy rainfall in southern China refers to the heavy rainfall that occurs within a weakly-forced synoptic environment under the influence of monsoonal airflows. It is usually located near the southern coast, and is characterized by poor predictability and a close relationship with coastal terrain. This study investigates the impacts of coastal terrain on the initiation, organization and heavy-rainfall potential of MCSs in warm-sector heavy rainfall over southern China using quasi-idealized WRF simulations and terrain-modification experiments. Typical warm-sector heavy rainfall events were selected to produce composite environments that forced the simulations. MCSs in these events all initiated in the early morning and developed into quasi-linear convective systems along the coast with a prominent backbuilding process. When the small coastal terrain is removed, the maximum 12-h rainfall accumulation decreases by ~46%. The convection initiation is advanced ~2 h with the help of orographic lifting associated with flow interaction with the coastal hills in the control experiment. Moreover, the coastal terrain weakens near-surface winds and thus decreases the deep-layer vertical wind shear component perpendicular to the coast and increases the component parallel to the coast; the coastal terrain also concentrates the moisture and instability over the coastal region by weakening the boundary layer jet. These modifications lead to faster upscale growth of convection and eventually a well-organized MCS. The coastal terrain is beneficial for backbuilding convection and thus persistent rainfall by providing orographic lifting for new cells on the western end of the MCS, and by facilitating a stronger and more stagnant cold pool, which stimulates new cells near its rear edge.


Information ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Milena Vuckovic ◽  
Johanna Schmidt ◽  
Thomas Ortner ◽  
Daniel Cornel

The application potential of Visual Analytics (VA), with its supporting interactive 2D and 3D visualization techniques, in the environmental domain is unparalleled. Such advanced systems may enable an in-depth interactive exploration of multifaceted geospatial and temporal changes in very large and complex datasets. This is facilitated by a unique synergy of modules for simulation, analysis, and visualization, offering instantaneous visual feedback of transformative changes in the underlying data. However, even if the resulting knowledge holds great potential for supporting decision-making in the environmental domain, the consideration of such techniques still have to find their way to daily practice. To advance these developments, we demonstrate four case studies that portray different opportunities in data visualization and VA in the context of climate research and natural disaster management. Firstly, we focus on 2D data visualization and explorative analysis for climate change detection and urban microclimate development through a comprehensive time series analysis. Secondly, we focus on the combination of 2D and 3D representations and investigations for flood and storm water management through comprehensive flood and heavy rain simulations. These examples are by no means exhaustive, but serve to demonstrate how a VA framework may apply to practical research.


Sign in / Sign up

Export Citation Format

Share Document