Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry

2017 ◽  
Vol 53 (2-4) ◽  
pp. 112-128 ◽  
Author(s):  
Gil Ju Lee ◽  
Young Jin Yoo ◽  
Young Min Song
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yair Rivenson ◽  
Yichen Wu ◽  
Aydogan Ozcan

Abstract Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance. Through data-driven approaches, these emerging techniques have overcome some of the challenges associated with existing holographic image reconstruction methods while also minimizing the hardware requirements of holography. These recent advances open up a myriad of new opportunities for the use of coherent imaging systems in biomedical and engineering research and related applications.


2020 ◽  
Vol 12 ◽  
pp. 251584141989949
Author(s):  
Samir N. Patel ◽  
Angell Shi ◽  
Turner D. Wibbelsman ◽  
Michael A. Klufas

The development of ultra-widefield retinal imaging has accelerated our understanding of common retinal diseases. As we continue to validate the diagnostic and prognostic significance of pathology in the retinal periphery, the ability to visualize and evaluate these features in an efficient and patient-friendly manner will become more important. Current interest in ultra-widefield imaging includes the development of potential biomarkers of disease progression and indicators of preclinical disease development. This article reviews the current ultra-widefield imaging systems and recent advances in their applications to clinical practice with a focus on diabetic retinopathy, retinal vein occlusion, uveitis, and pediatric retina.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
XianGang Luo ◽  
Fei Zhang ◽  
MingBo Pu ◽  
YingHui Guo ◽  
Xiong Li ◽  
...  

Abstract Optical imaging systems, like microscopes, cameras, and telescopes, continue to expand the scope of human observation of the world. As one of the key indicators of imaging systems, the field-of-view (FOV) is often limited by coma aberration. Expanding it generally relies on a combination of complex lenses, leading to a bulky and cumbersome system. Recently, the emergency of meta-optics provides an alternative to constructing compact and lightweight large-FOV metalens through elaborated phase modulation within a flat surface, showing great potential in surveillance, unmanned vehicles, onboard planes or satellites, medical science, and other new applications. In this article, we review recent advances of wide-angle metalenses, including operation principles, design strategies, and application demos. Firstly, basic principles of wide-angle imaging using a single metalens are interpreted. Secondly, some advanced methods for designing subwavelength structures with high angle robustness and high efficiency are discussed. Thirdly, some representative functional devices and applications are surveyed. Finally, we conclude with an outlook on future potentials and challenges that need to be overcome.


1988 ◽  
Vol 132 ◽  
pp. 525-530
Author(s):  
Raffaele G. Gratton

The use CCD detectors has allowed a major progress in abundance derivations for globular cluster stars in the last years. Abundances deduced from high dispersion spectra now correlates well with other abundance indicators. I discuss some problems concerning the derivation of accurate metal abundances for globular clusters using high dispersion spectra from both the old photographic and the most recent CCD data. The discrepant low abundances found by Cohen (1980), from photographic material for M71 giants, are found to be due to the use of too high microturbulences.


Sign in / Sign up

Export Citation Format

Share Document