CFD Simulation of Liquid–Liquid Two-Phase Hydrodynamics and Axial Dispersion Analysis for a Non-Pulsed Disc and Doughnut Solvent Extraction Column

2016 ◽  
Vol 34 (6) ◽  
pp. 535-548 ◽  
Author(s):  
Heng Yi ◽  
Yong Wang ◽  
Kathryn H. Smith ◽  
W. Y. Fei ◽  
Geoffrey W. Stevens
2017 ◽  
Vol 56 (11) ◽  
pp. 3049-3058 ◽  
Author(s):  
Heng Yi ◽  
Yong Wang ◽  
Kathryn H. Smith ◽  
Weiyang Fei ◽  
Geoffrey W. Stevens

2021 ◽  
Author(s):  
Benyamin Shakib ◽  
Rezvan Torkaman ◽  
Meisam Torab-Mostaedi ◽  
Mojtaba Saremi ◽  
Mehdi Asadollahzadeh

Abstract In this survey, the reactive mass transfer data are determined for zinc extraction from chloride solution using D2EHPA in the MRDC extraction column. The numerical analysis for evaluating the column performance is applied to describe mass balance equations. Four mathematical models (backflow, forward mixing, plug flow, and axial dispersion) are investigated to compute the mass transfer coefficients of the dispersed phase. The solvent extraction experiments showed that the optimum zinc transport efficiency in rotor speed of 410 rpm in this column is equal to 98.85% and 99.85 for extraction and stripping stages, respectively. The model's achievement is compared with the solvent extraction data and a significant validity is obtained by coupling the forward mixing approach. The mathematical modeling expresses that the coefficients of axial dispersion and backflow based on the continuous phase increase by an increase in the rotor speed and inlet continuous phase rate. While these coefficients reduce at a higher inlet dispersed phase rate. The FMM method is preferred to predict the reactive mass transfer rate in the MRDC column due to the lowest relative deviation. The experimental study and mathematical modeling in this report provide beneficial information about the metallurgical industry to design solvent extraction equipment.


2017 ◽  
Vol 56 (14) ◽  
pp. 4052-4059 ◽  
Author(s):  
Yong Wang ◽  
Heng Yi ◽  
Kathryn H. Smith ◽  
Kathryn A. Mumford ◽  
Geoffrey W. Stevens

1991 ◽  
Vol 56 (6) ◽  
pp. 1249-1252
Author(s):  
Marie Fialová ◽  
Ctirad Verner ◽  
Lothar Ebner

The characteristics of axial dispersion in the liquid phase were measured for two basic flow regimes in a horizontal two-phase tube reactor. The data obtained indicate that in some flow regions, axial dispersion can be quite significant.


2021 ◽  
Vol 11 (12) ◽  
pp. 5705
Author(s):  
Adrian Stuparu ◽  
Romeo Susan-Resiga ◽  
Alin Bosioc

The present study examines the possibility of using an industrial stirred chemical reactor, originally employed for liquid–liquid mixtures, for operating with two-phase liquid–solid suspensions. It is critical when obtaining a high-quality chemical product that the solid phase remains suspended in the liquid phase long enough that the chemical reaction takes place. The impeller was designed for the preparation of a chemical product with a prescribed composition. The present study aims at finding, using a numerical simulation analysis, if the performance of the original impeller is suitable for obtaining a new chemical product with a different composition. The Eulerian multiphase model was employed along with the renormalization (RNG) k-ε turbulence model to simulate liquid–solid flow with a free surface in a stirred tank. A sliding-mesh approach was used to model the impeller rotation with the commercial CFD code, FLUENT. The results obtained underline that 25% to 40% of the solid phase is sedimented on the lower part of the reactor, depending on the initial conditions. It results that the impeller does not perform as needed; hence, the suspension time of the solid phase is not long enough for the chemical reaction to be properly completed.


2008 ◽  
Vol 10 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Roch Plewik ◽  
Piotr Synowiec ◽  
Janusz Wójcik

Two-phase CFD simulation of the monodyspersed suspension hydraulic behaviour in the tank apparatus from a circulatory pipe The hydrodynamics in fluidized-bed crystallizers is studied by CFD method. The simulations were performed by a commercial packet of computational fluid dynamics Fluent 6.x. For the one-phase modelling (15), a standard k-ε model was applied. In the case of the two-phase flows the Eulerian multi-phase model with a standard k-ε method, aided by the k-ε dispersed model for viscosity, has been used respectively. The collected data put a new light on the suspension flow behaviour in the annular zone of the fluidised bed crystallizer. From the presented here CFD simulations, it clearly issues that the real hydraulic conditions in the fluidised bed crystallizers are far from the ideal ones.


Sign in / Sign up

Export Citation Format

Share Document