Axial dispersion in the liquid phase in a horizontal two-phase tube reactor

1991 ◽  
Vol 56 (6) ◽  
pp. 1249-1252
Author(s):  
Marie Fialová ◽  
Ctirad Verner ◽  
Lothar Ebner

The characteristics of axial dispersion in the liquid phase were measured for two basic flow regimes in a horizontal two-phase tube reactor. The data obtained indicate that in some flow regions, axial dispersion can be quite significant.

2004 ◽  
Vol 69 (7) ◽  
pp. 581-599 ◽  
Author(s):  
Ljubisa Nikolic ◽  
Vesna Nikolic ◽  
Vlada Veljkovic ◽  
Miodrag Lazic ◽  
Dejan Skala

The influence of the gas flow rate and vibration intensity in the presence of the solid phase (polypropylene spheres) on axial mixing of the liquid phase in a three phase (gas-liquid-solid) Karr reciprocating plate column (RPC) was investigated. Assuming that the dispersionmodel of liquid flow could be used for the real situation inside the column, the dispersion coefficient of the liquid phase was determined as a function of different operating parameters. For a two-phase liquid-solid RPC the following correlation was derived: DL = 1.26(Af)1.42 UL 0.51 ?S 0.23 and a similar equation could be applied with ? 30 % confidence for the calculation of axial dispersion in the case of a three-phase RPC: DL = 1.39(Af)0.47 UL0.42UG0.03 ?S -0.26.


1986 ◽  
Vol 51 (9) ◽  
pp. 1925-1932 ◽  
Author(s):  
Marie Fialová ◽  
Karl-Heinz Redlich ◽  
Kurt Winkler

Axial dispersion characteristics in the liquid phase have been determined for three selected types of static mixers using the impulse response technique in a vertical tubular contactor for single phase (water) and two phase (water-air, cocurrent flow arrangement) systems. The character of the measured dependences for individual types of static mixers has been found different and also corresponding values of axial dispersion have been found significant. From the stand point of axial dispersion the behaviour of the static mixer under the two phase flow has been found different from its behaviour in the single phase flow system.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


2018 ◽  
Author(s):  
Munzarin Morshed ◽  
Syed Imtiaz ◽  
Mohammad Aziz Rahman

2013 ◽  
Vol 54 (6) ◽  
Author(s):  
Thomas Soodt ◽  
Desirée Pott ◽  
Michael Klaas ◽  
Wolfgang Schröder

Sign in / Sign up

Export Citation Format

Share Document