BIOSYNTHESIS OF THE CELL WALL POLYSACCHARIDE IN THE RED MICROALGA RHODELLA RETICULATA

1998 ◽  
Vol 46 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Arava(Katz) Cohen ◽  
Shoshana(Malis) Arad

This research forms part of our ongoing study to elucidate cell wall biosynthesis in red microalgae. Cell wall formation during the cell cycle of the red microalga Rhodella reticulata was followed in cultures synchronized by a regime of dark (12 h), light (12 h), and dilution of the culture thereafter to 1–1.5 × 106cells/ml. Under these conditions, cell number doubled after 24 h, DNA replication occurred between the 6th and 12th hours, and cell division took place between the 8th and 14th hours of the cycle. Cell wall constituents increased only during the light hours, peaking as follows: sulfur at the 2nd hour, protein at the 11th hour, and the various sugars (each at different times) between the 6th and 12th hours of the cycle. Since xylose predominated from the beginning of the cycle, it appears that this sugar was produced first and formed the basic polymer skeleton to which other sugars were attached. Two polymers were produced during the cycle, their sizes (as determined by gel filtration) being 0.5 × 106 and 1.15 × 106 daltons. It thus seems likely that the smaller 0.5 × 106 dalton polymers are produced inside the cells and then excreted into the medium, where they are further polymerized to produce the final-size polymers. The herbicide 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose biosynthesis, was previously found to inhibit cell wall formation in red microalgae. When it was added to the cultures at the beginning or at the end of the cycle, no inhibition in cell division was detected, but when it was added at the 8th hour, cell division was significantly inhibited (38%), resulting in an increase in mean cell volume. Addition of DCB did not affect DNA replication or cell wall polysaccharide content or composition, as measured after 24 h of the cycle. It seems that DCB affects an inhibitory phase in cell division and that this inhibition is not necessarily coupled with its inhibition of formation of the sulfated polysaccharide.

1994 ◽  
Vol 63 (4) ◽  
pp. 706-713
Author(s):  
Salak PHANSIRI ◽  
Hiroshi MIYAKE ◽  
Eizo MAEDA ◽  
Takeshi TANIGUCHI

1993 ◽  
Vol 62 (3) ◽  
pp. 429-437
Author(s):  
Salak PHANSIRI ◽  
Hiroshi MIYAKE ◽  
Eizo MAEDA ◽  
Takeshi TANIGUCHI

1991 ◽  
Vol 82 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Barbro S. M. Ingemarsson ◽  
Leif Eklund ◽  
Lennart Eliasson

2014 ◽  
Vol 48 (4) ◽  
pp. 389-397
Author(s):  
Liu Lin ◽  
Quan Xianqing ◽  
Zhao Xiaomei ◽  
Huang Lihua ◽  
Feng Shangcai ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Sign in / Sign up

Export Citation Format

Share Document