red microalga
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259833
Author(s):  
Li Wei ◽  
Wuxin You ◽  
Zhengru Xu ◽  
Wenfei Zhang

Single-cell red microalga Porphyridium cruentum is potentially considered to be the bioresource for biofuel and pharmaceutical production. Nitrogen is a kind of nutrient component for photosynthetic P. cruentum. Meanwhile, nitrogen stress could induce to accumulate some substances such as lipid and phycoerythrin and affect its growth and physiology. However, how marine microalga Porphyridium cruentum respond and adapt to nitrogen starvation remains elusive. Here, acclimation of the metabolic reprogramming to changes in the nutrient environment was studied by high-throughput mRNA sequencing in the unicellular red alga P. cruentum. Firstly, to reveal transcriptional regulation, de novo transcriptome was assembled and 8,244 unigenes were annotated based on different database. Secondly, under nitrogen deprivation, 2100 unigenes displayed differential expression (1134 upregulation and 966 downregulation, respectively) and some pathways including carbon/nitrogen metabolism, photosynthesis, and lipid metabolism would be reprogrammed in P. cruentum. The result demonstrated that nitrate assimilation (with related unigenes of 8–493 fold upregulation) would be strengthen and photosynthesis (with related unigenes of 6–35 fold downregulation) be impaired under nitrogen deprivation. Importantly, compared to other green algae, red microalga P. cruentum presented a different expression pattern of lipid metabolism in response to nitrogen stress. These observations will also provide novel insight for understanding adaption mechanisms and potential targets for metabolic engineering and synthetic biology in P. cruentum.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1836
Author(s):  
Antonio Gavalás-Olea ◽  
Antje Siol ◽  
Yvonne Sakka ◽  
Jan Köser ◽  
Nina Nentwig ◽  
...  

There is an increasing interest in algae-based raw materials for medical, cosmetic or nutraceutical applications. Additionally, the high diversity of physicochemical properties of the different algal metabolites proposes these substances from microalgae as possible additives in the chemical industry. Among the wide range of natural products from red microalgae, research has mainly focused on extracellular polymers for additive use, while this study also considers the cellular components. The aim of the present study is to analytically characterize the extra- and intracellular molecular composition from the red microalga Dixoniella grisea and to evaluate its potential for being used in the tribological industry. D. grisea samples, fractionated into extracellular polymers (EPS), cells and medium, were examined for their molecular composition. This alga produces a highly viscous polymer, mainly composed of polysaccharides and proteins, being secreted into the culture medium. The EPS and biomass significantly differed in their molecular composition, indicating that they might be used for different bio-additive products. We also show that polysaccharides and proteins were the major chemical compounds in EPS, whereas the content of lipids depended on the separation protocol and the resulting product. Still, they did not represent a major group and were thus classified as a potential valuable side-product. Lyophilized algal fractions obtained from D. grisea were found to be not toxic when EPS were not included. Upon implementation of EPS as a commercial product, further assessment on the environmental toxicity to enchytraeids and other soil organisms is required. Our results provide a possible direction for developing a process to gain an environmentally friendly bio-additive for application in the tribological industry based on a biorefinery approach.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 939
Author(s):  
Vít Náhlík ◽  
Vilém Zachleder ◽  
Mária Čížková ◽  
Kateřina Bišová ◽  
Anjali Singh ◽  
...  

The extremophilic unicellular red microalga Galdieria sulphuraria (Cyanidiophyceae) is able to grow autotrophically, or mixo- and heterotrophically with 1% glycerol as a carbon source. The alga divides by multiple fission into more than two cells within one cell cycle. The optimal conditions of light, temperature and pH (500 µmol photons m−2 s−1, 40 °C, and pH 3; respectively) for the strain Galdieria sulphuraria (Galdieri) Merola 002 were determined as a basis for synchronization experiments. For synchronization, the specific light/dark cycle, 16/8 h was identified as the precondition for investigating the cell cycle. The alga was successfully synchronized and the cell cycle was evaluated. G. sulphuraria attained two commitment points with midpoints at 10 and 13 h of the cell cycle, leading to two nuclear divisions, followed subsequently by division into four daughter cells. The daughter cells stayed in the mother cell wall until the beginning of the next light phase, when they were released. Accumulation of glycogen throughout the cell cycle was also described. The findings presented here bring a new contribution to our general understanding of the cell cycle in cyanidialean red algae, and specifically of the biotechnologically important species G. sulphuraria.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dora Allegra Carbone ◽  
Giuseppe Olivieri ◽  
Antonino Pollio ◽  
Michael Melkonian

Abstract In the last years, the acidothermophilic red microalga Galdieria sulphuraria has been increasingly studied for industrial applications such as wastewater treatment, recovery of rare earth elements, production of phycobilins. However, even now it is not possible an industrial cultivation of this organism because biotechnological research on G. sulphuraria and allied species is relatively recent and fragmented. Having in mind a possible scale-up for commercial applications, we have compared the growth and photosynthetic performance of G. sulphuraria in four suspended systems (Inclined bubble column, Decanter Laboratory Flask, Tubular Bioreactor, Ultra-flat plate bioreactor) and one immobilized system (Twin Layer Sytem). The results showed that G. sulphuraria had the highest growth, productivity and photosynthetic performance, when grown on the immobilized system, which also offers some economics advantages.


2020 ◽  
Author(s):  
dora allegra carbone ◽  
Giuseppe Olivieri ◽  
Antonino Pollio ◽  
Michael Melkonian

Abstract In the last years, the acidothermophilic red microalga Galdieria sulphuraria has been increasingly studied for industrial applications such as wastewater treatment, recovery of rare earth elements, production of phycobilins. However, even now it is not possible an industrial cultivation of this organism because biotechnological research on G. sulphuraria and allied species is relatively recent and fragmented. Having in mind a possible scale-up for commercial applications, we have compared the growth and photosynthetic performance of G. sulphuraria in four suspended systems (Inclined bubble column, Decanter Laboratory Flask, Tubular Bioreactor, Ultra-flat plate bioreactor) and one immobilized system (Twin Layer Sytem). The results showed that G. sulphuraria had the highest growth, productivity and photosynthetic performance, when grown on the immobilized system, which also offers some economics advantages.


2019 ◽  
Vol 32 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Delicia Yunita Rahman ◽  
Fean Davisunjaya Sarian ◽  
Marc J. E. C. van der Maarel

Abstract A major disadvantage of microalgal cultivation is limited biomass yields due to the autotrophic lifestyle of most microalgal species. Heterotrophic growth on a suitable carbon source and oxygen can overcome such limitations. The red microalga Galdieria sulphuraria strain 074G grows heterotrophically on glucose and a number of other carbon sources while constitutively producing photopigments, including the blue-colored phycocyanin, a natural food colorant. Galdieria sulphuraria strain 074G grew well on maltodextrins as well as on granular starch in combination with the enzyme cocktail Stargen002. The maltodextrin cultures produced 2 mg phycocyanin per gram substrate, being slightly more than on glucose. The phycocyanin extracted from maltodextrin-grown cultures was thermostable up to 55 °C. Maltodextrins can be a cheap alternative to glucose syrups for the production of phycocyanin as natural food colorant.


2018 ◽  
Vol 120 ◽  
pp. 2106-2114 ◽  
Author(s):  
Nesrine Gargouch ◽  
Ines Karkouch ◽  
Jihen Elleuch ◽  
Salem Elkahoui ◽  
Phillipe Michaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document