plant protoplasts
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 10)

H-INDEX

44
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Kelsey M. Reed ◽  
Bastiaan O. R. Bargmann

The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.


2021 ◽  
Vol 22 (15) ◽  
pp. 7817
Author(s):  
Seung Hee Choi ◽  
Myoung Hui Lee ◽  
Da Mon Jin ◽  
Su Ji Ju ◽  
Woo Seok Ahn ◽  
...  

Trichostatin A (TSA) is a representative histone deacetylase (HDAC) inhibitor that modulates epigenetic gene expression by regulation of chromatin remodeling in cells. To investigate whether the regulation of chromatin de-condensation by TSA can affect the increase in the efficiency of Cas9 protein-gRNA ribonucleoprotein (RNP) indel formation from plant cells, genome editing efficiency using lettuce and tobacco protoplasts was examined after several concentrations of TSA treatments (0, 0.1, 1 and 10 μM). RNP delivery from protoplasts was conducted by conventional polyethylene glycol (PEG) transfection protocols. Interestingly, the indel frequency of the SOC1 gene from TSA treatments was about 3.3 to 3.8 times higher than DMSO treatment in lettuce protoplasts. The TSA-mediated increase of indel frequency of the SOC1 gene in lettuce protoplasts occurred in a concentration-dependent manner, although there was not much difference. Similar to lettuce, TSA also increased the indel frequency by 1.5 to 1.8 times in a concentration-dependent manner during PDS genome editing using tobacco protoplasts. The MNase test clearly showed that chromatin accessibility with TSA treatments was higher than that of DMSO treatment. Additionally, TSA treatment significantly increased the level of histone H3 and H4 acetylation from lettuce protoplasts. The qRT-PCR analysis showed that expression of cell division-related genes (LsCYCD1-1, LsCYCD3-2, LsCYCD6-1, and LsCYCU4-1) was increased by TSA treatment. These findings could contribute to increasing the efficiency of CRISPR/Cas9-mediated genome editing. Furthermore, this could be applied for the development of useful genome-edited crops using the CRISPR/Cas9 system with plant protoplasts.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Ipsita Pujari ◽  
Abitha Thomas ◽  
Padmalatha S. Rai ◽  
Kapaettu Satyamoorthy ◽  
Vidhu Sankar Babu
Keyword(s):  

2020 ◽  
Vol 118 (3) ◽  
pp. 565a
Author(s):  
Akanksha Gandhi ◽  
Cruz Chapa ◽  
Rupesh Kariyat ◽  
Nirakar Sahoo

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jin-Hong Lin ◽  
Zhi-Jun Xu ◽  
Jia-Shi Peng ◽  
Jing Zhao ◽  
Guo-Bin Zhang ◽  
...  

Abstract Background Proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant development and stress tolerance. However, the molecular components responsible for the transport of these molecules in rice remain largely unknown. Results Here we identified OsProT1 and OsProT3 as functional transporters for Pro and GABA. Transient expression of eGFP-OsProTs in plant protoplasts revealed that both OsProT1 and OsProT3 are localized to the plasma membrane. Ectopic expression in a yeast mutant demonstrated that both OsProT1 and OsProT3 specifically mediate transport of Pro and GABA with affinity for Pro in the low affinity range. qRT-PCR analyses suggested that OsProT1 was preferentially expressed in leaf sheathes during vegetative growth, while OsProT3 exhibited relatively high expression levels in several tissues, including nodes, panicles and roots. Interestingly, both OsProT1 and OsProT3 were induced by cadmium stress in rice shoots. Conclusions Our results suggested that plasma membrane-localized OsProT1 and OsProT3 efficiently transport Pro and GABA when ectopically expressed in yeast and appear to be involved in various physiological processes, including adaption to cadmium stress in rice plants.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Satomi Tagawa ◽  
Yusuke Yamagishi ◽  
Ugai Watanabe ◽  
Ryo Funada ◽  
Tetsuo Kondo

Abstract In this study, dynamic changes in structural polysaccharide deposition on the plasma membrane and cortical microtubules (CMTs) behavior were monitored in protoplasts isolated from white birch callus using confocal laser scanning microscopy and atomic force microscopy. We focused on the influence of an environmental stimulus on cell wall regeneration in protoplasts by employing an acidic culture medium containing a high concentration of Ca2+ (the stress condition). Under the non-stress condition, cellulose microfibrils and callose were initially synthesized, and thereafter deposited on the plasma membrane as “primary cell wall material”. Under the stress condition, callose micro-sized fibers were secreted without cell wall regeneration. Behavior of CMTs labeled with mammalian microtubule-associated protein 4 with green fluorescent protein in transgenic protoplasts was monitored by time-lapse video analysis. Under the non-stress condition, CMTs behavior showed a linear arrangement at a fixed position, whereas unfixed manner of CMTs behavior was observed under the stress condition. These findings indicate that excessive Ca2+ affects cellulose synthesis and CMTs dynamics in plant protoplasts. Current study first demonstrated dynamics of cell wall regeneration and CMTs in woody protoplast, which provides novel insight to aid in understanding early stages of primary cell wall formation in plants.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3146 ◽  
Author(s):  
Weigui Luo ◽  
Yuan Xiao ◽  
Qiwen Liang ◽  
Yi Su ◽  
Langtao Xiao

Small signaling peptides (SSPs) are a class of short peptides playing critical roles in plant growth and development. SSPs are also involved in the phytohormone signaling pathway. However, identification of mature SSPs is still a technical challenge because of their extremely low concentrations in plant tissue and complicated interference by many other metabolites. Here, we report an optimized protocol to extract SSPs based on protoplast extraction and to analyze SSPs based on tandem mass spectrometry peptidomics. Using plant protoplasts as the material, soluble peptides were directly extracted into phosphate buffer. The interference of non-signaling peptides was significantly decreased. Moreover, we applied the protocol to identify potential SSPs in auxin treated wild type and auxin biosynthesis defective mutant yuc2yuc6. Over 100 potential SSPs showed a response to auxin in Arabidopsis thaliana.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Kaori Sakai ◽  
Florence Charlot ◽  
Thomas Le Saux ◽  
Sandrine Bonhomme ◽  
Fabien Nogué ◽  
...  

2019 ◽  
Author(s):  
K. Sakai ◽  
F. Charlot ◽  
T. Le Saux ◽  
S. Bonhomme ◽  
F. Nogué ◽  
...  

ABSTRACTBackgroundOne of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, which in some species, can be very close from what is defined as cell totipotency. Methods and differentiation protocols used in plant physiology and plant biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes.ResultsHerein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of Physcomitrella patens (P. patens) growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions.We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin.ConclusionsWe developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of P. patens development in a microfluidic environment. This setup allows imaging of P. patens development at high resolution and over long time periods.


Sign in / Sign up

Export Citation Format

Share Document