Estimation of velocity and borehole receiver location via full waveform inversion of vertical seismic profile data

2020 ◽  
Vol 51 (3) ◽  
pp. 378-387
Author(s):  
Chanil Kim ◽  
Sukjoon Pyun
2020 ◽  
Vol 68 (6) ◽  
pp. 1944-1957 ◽  
Author(s):  
Eric M. Takam Takougang ◽  
Mohammed Y. Ali ◽  
Youcef Bouzidi ◽  
Fateh Bouchaala ◽  
Akmal A. Sultan ◽  
...  

2017 ◽  
Vol 44 (14) ◽  
pp. 7211-7218 ◽  
Author(s):  
Anton Egorov ◽  
Roman Pevzner ◽  
Andrej Bóna ◽  
Stanislav Glubokovskikh ◽  
Vladimir Puzyrev ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B335-B351 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen

Viscoelastic full-waveform inversion is applied to walk-away vertical seismic profile data acquired at a producing heavy-oil field in Western Canada for the determination of subsurface velocity models (P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]) and attenuation models (P-wave quality factor [Formula: see text] and S-wave quality factor [Formula: see text]). To mitigate strong velocity-attenuation trade-offs, a two-stage approach is adopted. In Stage I, [Formula: see text] and [Formula: see text] models are first inverted using a standard waveform-difference (WD) misfit function. Following this, in Stage II, different amplitude-based misfit functions are used to estimate the [Formula: see text] and [Formula: see text] models. Compared to the traditional WD misfit function, the amplitude-based misfit functions exhibit stronger sensitivity to attenuation anomalies and appear to be able to invert [Formula: see text] and [Formula: see text] models more reliably in the presence of velocity errors. Overall, the root-mean-square amplitude-ratio and spectral amplitude-ratio misfit functions outperform other misfit function choices. In the final outputs of our inversion, significant drops in the [Formula: see text] to [Formula: see text] ratio (~1.6) and Poisson’s ratio (~0.23) are apparent within the Clearwater Formation (depth ~0.45–0.50 km) of the Mannville Group in the Western Canada Sedimentary Basin. Strong [Formula: see text] (~20) and [Formula: see text] (~15) anomalies are also evident in this zone. These observations provide information to help identify the target attenuative reservoir saturated with heavy-oil resources.


2018 ◽  
Vol 2018 (1) ◽  
pp. 1-3
Author(s):  
Anton Egorov ◽  
Andrej Bóna ◽  
Roman Pevzner ◽  
Konstantin Tertyshnikov

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R273-R281 ◽  
Author(s):  
Anton Egorov ◽  
Julia Correa ◽  
Andrej Bóna ◽  
Roman Pevzner ◽  
Konstantin Tertyshnikov ◽  
...  

Distributed acoustic sensing (DAS) is a rapidly developing technology particularly useful for the acquisition of vertical seismic profile (VSP) surveys. DAS data are increasingly used for seismic imaging, but not for estimating rock properties. We have developed a workflow for estimating elastic properties of the subsurface using full-waveform inversion (FWI) of DAS VSP data. Whereas conventional borehole geophones usually measure three components of particle velocity, DAS measures a single quantity, which is an approximation of the strain or strain rate along the fiber. Standard FWI algorithms are developed for particle velocity data, and hence their application to DAS data requires conversion of these data to particle velocity along the fiber. This conversion can be accomplished by a specially designed filter. Field measurements show that the conversion result is close to vertical particle velocity as measured by geophones. Elastic time-domain FWI of a synthetic multioffset VSP data set for a vertical well shows that the inversion of the vertical component alone is sufficient to recover elastic properties of the subsurface. Application of the proposed workflow to a multioffset DAS data set acquired at the CO2CRC Otway Project site in Victoria, Australia, reveals salient subhorizontal layering consistent with the known geology of the site. The inverted [Formula: see text] model at the well location matches the upscaled [Formula: see text] log with a correlation coefficient of 0.85.


Sign in / Sign up

Export Citation Format

Share Document