Amplitude-based misfit functions in viscoelastic full-waveform inversion applied to walk-away vertical seismic profile data

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B335-B351 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen

Viscoelastic full-waveform inversion is applied to walk-away vertical seismic profile data acquired at a producing heavy-oil field in Western Canada for the determination of subsurface velocity models (P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]) and attenuation models (P-wave quality factor [Formula: see text] and S-wave quality factor [Formula: see text]). To mitigate strong velocity-attenuation trade-offs, a two-stage approach is adopted. In Stage I, [Formula: see text] and [Formula: see text] models are first inverted using a standard waveform-difference (WD) misfit function. Following this, in Stage II, different amplitude-based misfit functions are used to estimate the [Formula: see text] and [Formula: see text] models. Compared to the traditional WD misfit function, the amplitude-based misfit functions exhibit stronger sensitivity to attenuation anomalies and appear to be able to invert [Formula: see text] and [Formula: see text] models more reliably in the presence of velocity errors. Overall, the root-mean-square amplitude-ratio and spectral amplitude-ratio misfit functions outperform other misfit function choices. In the final outputs of our inversion, significant drops in the [Formula: see text] to [Formula: see text] ratio (~1.6) and Poisson’s ratio (~0.23) are apparent within the Clearwater Formation (depth ~0.45–0.50 km) of the Mannville Group in the Western Canada Sedimentary Basin. Strong [Formula: see text] (~20) and [Formula: see text] (~15) anomalies are also evident in this zone. These observations provide information to help identify the target attenuative reservoir saturated with heavy-oil resources.

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. B87-B107 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yanfei Wang

Elastic full-waveform inversion (FWI) in transversely isotropic media with a vertical symmetry axis (VTI) is applied to field walk-away vertical seismic profile (W-VSP) data acquired in Western Canada. The performance of VTI-elastic FWI is significantly influenced by the model parameterization choice. Synthetic analysis based on specific field survey configuration is carried out to evaluate three different VTI-elastic model parameterizations. Interparameter trade-offs are quantified using the recently introduced interparameter contamination sensitivity kernel approach. Synthetic results suggest that neglecting anisotropy leads to inaccurate velocity estimations. For the conventional vertical velocity-Thomsen’s parameter parameterization (i.e., vertical P-wave velocity, vertical S-wave velocity, Thomsen’s parameters [Formula: see text] and [Formula: see text]), a sequential inversion strategy is designed to reduce strong natural interparameter trade-offs. The model parameterizations of elastic-constant ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) and velocity-based (vertical, horizontal, and normal move-out P-wave velocities and vertical S-wave velocity) models appear to suffer from fewer interparameter trade-offs, providing more reliable velocity and anisotropy models. Results derived from application of VTI-elastic FWI to the field W-VSP data set tend to support the synthetic conclusions. Multiparameter point spread functions are calculated to quantify the local interparameter trade-offs of the inverted models. The output inversion results are interpreted to provide valuable references regarding the target hydrocarbon reservoir.


2018 ◽  
Vol 2018 (1) ◽  
pp. 1-5
Author(s):  
Anton Egorov ◽  
Andrej Bóna ◽  
Roman Pevzner ◽  
Stanislav Glubokovskikh ◽  
Konstantin Tertyshnikov

2020 ◽  
Vol 68 (6) ◽  
pp. 1944-1957 ◽  
Author(s):  
Eric M. Takam Takougang ◽  
Mohammed Y. Ali ◽  
Youcef Bouzidi ◽  
Fateh Bouchaala ◽  
Akmal A. Sultan ◽  
...  

2018 ◽  
Vol 2018 (1) ◽  
pp. 1-3
Author(s):  
Anton Egorov ◽  
Andrej Bóna ◽  
Roman Pevzner ◽  
Konstantin Tertyshnikov

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R129-R140 ◽  
Author(s):  
Ju-Won Oh ◽  
Mahesh Kalita ◽  
Tariq Alkhalifah

We have developed an efficient elastic full-waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the crosscorrelation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave ExA automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multiparameter FWI compared with the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from the North Sea.


2017 ◽  
Vol 44 (14) ◽  
pp. 7211-7218 ◽  
Author(s):  
Anton Egorov ◽  
Roman Pevzner ◽  
Andrej Bóna ◽  
Stanislav Glubokovskikh ◽  
Vladimir Puzyrev ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R185-R206 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yu Geng ◽  
Junxiao Li

Simultaneous determination of multiple physical parameters using full-waveform inversion (FWI) suffers from interparameter trade-off difficulties. Analyzing the interparameter trade-offs in different model parameterizations of isotropic-elastic FWI, and thus determining the appropriate model parameterization, are critical for efficient inversion and obtaining reliable inverted models. Five different model parameterizations are considered and compared including velocity-density, modulus-density, impedance-density, and two velocity-impedance parameterizations. The scattering radiation patterns are first used for interparameter trade-off analysis. Furthermore, a new framework is developed to evaluate the interparameter trade-off based upon multiparameter Hessian-vector products: Multiparameter point spread functions (MPSFs) and interparameter contamination sensitivity kernels (ICSKs), which provide quantitative, second-order measurements of the interparameter contaminations. In the numerical experiments, the interparameter trade-offs in various model parameterizations are evaluated using the MPSFs and ICSKs. Inversion experiments are carried out with simple Gaussian-anomaly models and a complex Marmousi model. Overall, the parameterization of the P-wave velocity, S-wave velocity, and density, and the parameterization of the P-wave velocity, S-wave velocity, and S-wave impedance perform best for reconstructing all of the physical parameters. Isotropic-elastic FWI of the Hussar low-frequency data set with various model parameterizations verifies our conclusions.


Sign in / Sign up

Export Citation Format

Share Document