Microwave Sensing Technique of Surface Hair-Line Cracks on Fast Moving Objects

1988 ◽  
Vol 23 (3) ◽  
pp. 176-182
Author(s):  
T. Koryu Ishii
Keyword(s):  
2014 ◽  
Vol 687-691 ◽  
pp. 564-571 ◽  
Author(s):  
Lin Bao Xu ◽  
Shu Ming Tang ◽  
Jin Feng Yang ◽  
Yan Min Dong

This paper proposes a robust tracking algorithm for an autonomous car-like robot, and this algorithm is based on the Tracking-Learning-Detection (TLD). In this paper, the TLD method is extended to track the autonomous car-like robot for the first time. In order to improve accuracy and robustness of the proposed algorithm, a method of symmetry detection of autonomous car-like robot rear is integrated into the TLD. Moreover, the Median-Flow tracker in TLD is improved with a pyramid-based optical flow tracking method to capture fast moving objects. Extensive experiments and comparisons show the robustness of the proposed method.


Author(s):  
Victor Sucasas ◽  
Ayman Radwan ◽  
Hugo Marques ◽  
Jonathan Rodriguez ◽  
Seiamak Vahid ◽  
...  
Keyword(s):  

2017 ◽  
Vol 10 (2) ◽  
pp. 665-710 ◽  
Author(s):  
L. Borcea ◽  
J. Garnier ◽  
G. Papanicolaou ◽  
K. Solna ◽  
C. Tsogka

2015 ◽  
Vol 27 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Jun Chen ◽  
◽  
Qingyi Gu ◽  
Tadayoshi Aoyama ◽  
Takeshi Takaki ◽  
...  

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270004/13.jpg"" width=""300"" /> Blink-spot projection method</div> We present a blink-spot projection method for observing moving three-dimensional (3D) scenes. The proposed method can reduce the synchronization errors of the sequential structured light illumination, which are caused by multiple light patterns projected with different timings when fast-moving objects are observed. In our method, a series of spot array patterns, whose spot sizes change at different timings corresponding to their identification (ID) number, is projected onto scenes to be measured by a high-speed projector. Based on simultaneous and robust frame-to-frame tracking of the projected spots using their ID numbers, the 3D shape of the measuring scene can be obtained without misalignments, even when there are fast movements in the camera view. We implemented our method with a high-frame-rate projector-camera system that can process 512 × 512 pixel images in real-time at 500 fps to track and recognize 16 × 16 spots in the images. Its effectiveness was demonstrated through several 3D shape measurements when the 3D module was mounted on a fast-moving six-degrees-of-freedom manipulator. </span>


Sign in / Sign up

Export Citation Format

Share Document