scholarly journals Feature Selection Empowered by Self-Inertia Weight Adaptive Particle Swarm Optimization for Text Classification

Author(s):  
Muhammad Asif ◽  
Arfan Ali Nagra ◽  
Maaz Bin Ahmad ◽  
Khalid Masood
2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3028 ◽  
Author(s):  
Zina Li ◽  
Lina Qiu ◽  
Ruixin Li ◽  
Zhipeng He ◽  
Jun Xiao ◽  
...  

Electroencephalogram (EEG) signals have been widely used in emotion recognition. However, the current EEG-based emotion recognition has low accuracy of emotion classification, and its real-time application is limited. In order to address these issues, in this paper, we proposed an improved feature selection algorithm to recognize subjects’ emotion states based on EEG signal, and combined this feature selection method to design an online emotion recognition brain-computer interface (BCI) system. Specifically, first, different dimensional features from the time-domain, frequency domain, and time-frequency domain were extracted. Then, a modified particle swarm optimization (PSO) method with multi-stage linearly-decreasing inertia weight (MLDW) was purposed for feature selection. The MLDW algorithm can be used to easily refine the process of decreasing the inertia weight. Finally, the emotion types were classified by the support vector machine classifier. We extracted different features from the EEG data in the DEAP data set collected by 32 subjects to perform two offline experiments. Our results showed that the average accuracy of four-class emotion recognition reached 76.67%. Compared with the latest benchmark, our proposed MLDW-PSO feature selection improves the accuracy of EEG-based emotion recognition. To further validate the efficiency of the MLDW-PSO feature selection method, we developed an online two-class emotion recognition system evoked by Chinese videos, which achieved good performance for 10 healthy subjects with an average accuracy of 89.5%. The effectiveness of our method was thus demonstrated.


Informatics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 21 ◽  
Author(s):  
Jingwei Too ◽  
Abdul Rahim Abdullah ◽  
Norhashimah Mohd Saad

Feature selection is a task of choosing the best combination of potential features that best describes the target concept during a classification process. However, selecting such relevant features becomes a difficult matter when large number of features are involved. Therefore, this study aims to solve the feature selection problem using binary particle swarm optimization (BPSO). Nevertheless, BPSO has limitations of premature convergence and the setting of inertia weight. Hence, a new co-evolution binary particle swarm optimization with a multiple inertia weight strategy (CBPSO-MIWS) is proposed in this work. The proposed method is validated with ten benchmark datasets from UCI machine learning repository. To examine the effectiveness of proposed method, four recent and popular feature selection methods namely BPSO, genetic algorithm (GA), binary gravitational search algorithm (BGSA) and competitive binary grey wolf optimizer (CBGWO) are used in a performance comparison. Our results show that CBPSO-MIWS can achieve competitive performance in feature selection, which is appropriate for application in engineering, rehabilitation and clinical areas.


Sign in / Sign up

Export Citation Format

Share Document