A SYSTEM AND CONTROL THEORETIC PERSPECTIVE ON ARTIFICIAL INTELLIGENCE PLANNING SYSTEMS

1989 ◽  
Vol 3 (1) ◽  
pp. 1-32 ◽  
Author(s):  
K. M. PASSINO ◽  
P. J. ANTSAKLIS
Author(s):  
Ruy L. Milidiu´ ◽  
Frederico dos Santos Liporace

Most transportation problems consist of moving carriers of stationary cargo. Pipelines are unique in the sense that they are stationary carriers of moving cargo. As a consequence, the planning problem of these systems has singularities that make it very challenging. In this paper we present the Pipesworld model, a transportation problem inspired by the transportation of petroleum derivatives in Petrobras’ pipelines. Pipesworld takes into account important features like product interface constraints, limited product storage capacities and due dates for product delivery. The relevance and unique characteristics of Pipesworld has been recognized by the Artificial Intelligence planning community. Pipesworld has been selected as one of the benchmark problems to be used in the Fourth International Planning Competition, a biannual event to benchmark the state-of-the-art general purpose artificial planning systems. We report the results obtained by general purpose artificial intelligence planning systems when applied to the Pipesworld instances. We also analyze how different modelling techniques may be used to significantly improve the planners’ performance. Although the basic algorithms of these planners do not incorporate any specific knowledge about the pipeline transportation problem, the results obtained so far are quite satisfactory. We also describe our current work in developing Plumber, a dedicated solver, aimed to tackle effective operational situations. Plumber uses general purpose planning techniques but also incorporates domain specific knowledge and may work together with a human expert during the planning process. By applying Plumber to the Pipesworld instances, we compare its performance against general purpose planning systems. Preliminary tests with a first version of Plumber shows that it already outperforms Fast-Forward (FF), one of the best available general purpose planning systems. This shows that improved versions of Plumber have the potential to effectively deal with pipeline transportation operational scenarios.


Author(s):  
Stephen R. Barley

The four chapters of this book summarize the results of thirty-five years dedicated to studying how technologies change work and organizations. The first chapter places current developments in artificial intelligence into the historical context of previous technological revolutions by drawing on William Faunce’s argument that the history of technology is one of progressive automation of the four components of any production system: energy, transformation, and transfer and control technologies. The second chapter lays out a role-based theory of how technologies occasion changes in organizations. The third chapter tackles the issue of how to conceptualize a more thorough approach to assessing how intelligent technologies, such as artificial intelligence, can shape work and employment. The fourth chapter discusses what has been learned over the years about the fears that arise when one sets out to study technical work and technical workers and methods for controlling those fears.


Author(s):  
Thilo von Pape

This chapter discusses how autonomous vehicles (AVs) may interact with our evolving mobility system and what they mean for mobile communication research. It juxtaposes a conceptualization of AVs as manifestations of automation and artificial intelligence with an analysis of our mobility system as a historically grown hybrid of communication and transportation technologies. Since the emergence of railroad and telegraph, this system has evolved on two layers: an underlying infrastructure to power and coordinate the movements of objects, people, and ideas in industrially scaled speeds, volumes, and complexity and an interface to seamlessly access this infrastructure and control it. AVs are poised to further enhance the seamlessness which mobile phones and cars already lent to mobility. But in assuming increasingly sophisticated control tasks, AVs also disrupt an established shift toward individual control, demanding new interfaces to enable higher levels of individual and collective control over the mobility infrastructure.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2146
Author(s):  
Manuel Andrés Vélez-Guerrero ◽  
Mauro Callejas-Cuervo ◽  
Stefano Mazzoleni

Processing and control systems based on artificial intelligence (AI) have progressively improved mobile robotic exoskeletons used in upper-limb motor rehabilitation. This systematic review presents the advances and trends of those technologies. A literature search was performed in Scopus, IEEE Xplore, Web of Science, and PubMed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology with three main inclusion criteria: (a) motor or neuromotor rehabilitation for upper limbs, (b) mobile robotic exoskeletons, and (c) AI. The period under investigation spanned from 2016 to 2020, resulting in 30 articles that met the criteria. The literature showed the use of artificial neural networks (40%), adaptive algorithms (20%), and other mixed AI techniques (40%). Additionally, it was found that in only 16% of the articles, developments focused on neuromotor rehabilitation. The main trend in the research is the development of wearable robotic exoskeletons (53%) and the fusion of data collected from multiple sensors that enrich the training of intelligent algorithms. There is a latent need to develop more reliable systems through clinical validation and improvement of technical characteristics, such as weight/dimensions of devices, in order to have positive impacts on the rehabilitation process and improve the interactions among patients, teams of health professionals, and technology.


Sign in / Sign up

Export Citation Format

Share Document