Review of material properties of (Mo/W)Se2-layered compound semiconductors useful for photoelectrochemical solar cells

2011 ◽  
Vol 17 (4) ◽  
pp. 281-301 ◽  
Author(s):  
S. Mary Delphine ◽  
M. Jayachandran ◽  
C. Sanjeeviraja
RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6477-6503 ◽  
Author(s):  
Manoj Kumar ◽  
Sanju Rani ◽  
Yogesh Singh ◽  
Kuldeep Singh Gour ◽  
Vidya Nand Singh

SnSe/SnSe2 has diverse applications like solar cells, photodetectors, memory devices, Li and Na-ion batteries, gas sensors, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap.


2007 ◽  
Vol 17 (30) ◽  
pp. 3205 ◽  
Author(s):  
Isabelle Rodriguez ◽  
Fernando Ramiro-Manzano ◽  
Pedro Atienzar ◽  
Jose Manuel Martinez ◽  
Francisco Meseguer ◽  
...  

2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Sign in / Sign up

Export Citation Format

Share Document