A study of the 500 to 900°C tensile deformation behaviour of spheroidal graphite cast iron

Cast Metals ◽  
1996 ◽  
Vol 8 (4) ◽  
pp. 211-216 ◽  
Author(s):  
C. P. Cheng ◽  
T. S. Lui ◽  
L. H. Chen
1984 ◽  
Vol 34 ◽  
Author(s):  
A. Hazotte ◽  
A. Simon

ABSTRACTRemarkable elongations have been obtained on cast iron samples subjected to alternate thermal cycles around the A1 critical point, under a tensile stress lower than the yield stresses of the stable phases. This procedure makes use of the “phase transformation plasticity”, characterised by an apparent softening of the material during its structural evolution. The influence of the applied stress, as well as the heating and cooling rates,on the elongation per cycle has been studied. A quantitative comparison between this “soft” technique and the more classical high-temperature metal forming techniques (deformation in stable α or γ domains, or in α + γ domain, high temperature creep) showed that, for an equal strain, the internal cavitation resulting from the thermomechanical cycling deformation of spheroīdal graphite cast iron is much smaller than for other techniques. This soft technique leads to higher mechanical characteristics at room temperature.


2007 ◽  
Vol 537-538 ◽  
pp. 389-396 ◽  
Author(s):  
Ibolya Kardos ◽  
Zoltán Gácsi ◽  
Péter János Szabó

Color etching is a widely used technique for visualizing different phases in metallic materials. Its advantage to the traditional etching techniques is that it gives additional information within one phase, namely, the color shade of a given phase can change in a certain range. This paper demonstrates that, due to the physics of the color etching, the shade of a phase also depends on the crystallographic orientation of the investigated grain. As a test material, spheroidal graphite cast iron was used, and individual grain orientation was identified by automated electron back scattering diffraction (EBSD). Results showed that there is a strong correlation between grain orientation and the shades obtained by color etching.


Wear ◽  
1996 ◽  
Vol 198 (1-2) ◽  
pp. 150-155 ◽  
Author(s):  
K. Shimizu ◽  
T. Noguchi ◽  
T. Kamada ◽  
H. Takasaki

Materia Japan ◽  
2009 ◽  
Vol 48 (12) ◽  
pp. 624-624 ◽  
Author(s):  
Yasuhide Ishiguro ◽  
Kenji Ichino ◽  
Hideto Takasugi

2007 ◽  
Vol 561-565 ◽  
pp. 925-928 ◽  
Author(s):  
Seijiro Maki ◽  
Kazuhito Suzuki ◽  
Kenichiro Mori

Feasibility of semisolid forging of cast iron using rapid resistance heating was experimentally investigated. Gray pig iron FC250 and spheroidal graphite cast iron FCD600, whose carbon equivalents are both 4.3% in mass, were used for the experiments. Since these cast irons have a narrow semisolid temperature range, an AC power supply with an input electric energy control function was used. In this study, the resistance heating characteristics of the cast irons were firstly examined, and then their semisolid forging experiments were conducted. In the forging experiments, the conditions of the forgings such as microstructures and hardness properties were examined, and the feasibility of the semisolid forging of cast iron using resistance heating was discussed. As a result, it was found that the method presented here is highly feasible.


Sign in / Sign up

Export Citation Format

Share Document