thermomechanical cycling
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Swaminathan Ganesan ◽  
Sampath Vedamanickam

In this study, the influence of upper cycle temperature (maximum temperature in a cycle) and the magnitude of applied stress on the functional properties of an SMA during partial thermomechanical cycling has been studied. A near-equiatomic NiTi SMA was chosen and tested under different upper cycle temperatures (between martensite finish (Mf) and austenite finish (Af) temperatures) and stress level (below and above the yield strength of the martensite). The upper cycle temperature was varied by controlling the magnitude of the current supply. The results show that a raise in the upper cycle temperature causes the permanent strain to increase and also lowers the stability. However, decreasing the stress imposed to a value lower than the yield strength of the martensite improves cyclic stability. The upper cycle temperature was found to influence the crack nucleation, whereas the applied stress level the crack propagation during partial thermomechanical cycling of SMAs. Therefore, decreasing the upper cycle temperature as well as the magnitude of stress applied to lower than the yield stress of martensite have been found to be suitable strategies for increasing the lifespan of SMA-based actuators during partial thermomechanical cycling.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012010
Author(s):  
G Swaminathan ◽  
V Sampath

Abstract This paper deals with how the magnitude of transformation strain changes on partial transformation cycling of an NiTi shape memory alloy. A near-equiatomic NiTi shape memory alloy was allowed to undergo partial thermal cycling keeping the stress constant at 100 MPa for various upper cycle temperatures (between austenite start and austenite finish), using a custom-built thermomechanical cycling test setup. The displacement and the temperature of the sample during cycling were measured using a LASER extensometer and an optical pyrometer, respectively. The test results show that the recovery strain and thermal hysteresis width decrease with increasing number of cycles during partial cycling. In addition, martensite start and martensite finish temperatures increase during the initial cycles, whereas austenite start and austenite finish temperatures decrease during the initial cycles, followed by their saturation.


2021 ◽  
Author(s):  
W Moon ◽  
SH Chung ◽  
J Chang

SUMMARY The aim of this study was to evaluate interfacial gap formation of CAD/CAM lithium disilicate inlay margins before and after thermomechanical loading. Methods and Materials: Mesio-occlusal-distal cavities were prepared on 12 extracted mandibular molars. The gingival margin of one proximal box was elevated with resin modified glass ionomer (RMGI) by a height of 2 mm (Group E [elevation]), and the margin of the other side served as a control (Group NE [no elevation]). Lithium disilicate computer-aided design and computer-aided manufacturing (CAD/CAM) inlays were fabricated and bonded with a self-adhesive resin cement. An aging process was simulated on the specimens under thermomechanical cycling by using a chewing simulator. Marginal integration was evaluated under scanning electron miscroscopy (SEM) using epoxy resin replicas before and after cycling. Marginal areas were stained with silver nitrate solution, and the volumetric gap was measured at the bonded interfaces using microcomputed tomography (CT) before and after cycling. Statistical analyses were performed using paired t-tests, the Wilcoxon signed rank test, and the Mann–Whitney test (a<0.05). Results: SEM showed marginal discontinuities in Group NE that increased after thermomechanical cycling. Micro-computed tomography exhibited three-dimensional dye-penetrating patterns at the interfaces before and after cycling. Interfacial disintegration was larger in Group NE before cycling (p<0.05). Thermomechanical cycling increased the gaps in both Groups NE and E (p<0.05). The gap increment from thermomechanical cycling was larger in Group NE (p<0.05). Conclusions: Thermomechanical cycling induced interfacial disintegration at the lithium disilicate CAD/CAM inlays, with deep proximal margins. Margin elevation with RMGI placement reduced the extent of the interfacial gap formation before and after the aging simulation.


2021 ◽  
Vol 34 (2) ◽  
pp. 173-182
Author(s):  
Fabiana França ◽  
Jonathan Tenuti ◽  
Isabela Broglio ◽  
Lara Paiva ◽  
Roberta Basting ◽  
...  

The aim of this study was to compare low- and high-viscosity bulk-fill composites for Knoop microhardness (KHN), microtensile bond strength (MTBS) to dentin in occlusal cavities, and fracture strength (FS) in molars with mesialocclusal-distal restoration. Disk-shaped samples with different thicknesses (2 or 4 mm) of low-viscosity (SDR Flow, Dentsply) and high-viscosity bulk-fill composites (Filtek BulkFill, 3M ESPE; and Tetric-N Ceram Bulk Fill, Ivoclar Vivadent) were prepared for top and bottom KHN analysis (n=10). MTBS to dentin and fracture pattern was evaluated in human molars with occlusal cavities restored with (n=10): conventional nanocomposite (Z350XT, 3M ESPE), low-viscosity (Filtek Bulk-fill Flow, 3M ESPE) or high-viscosity bulk-fill composites (Filtek BulkFill). The FS and fracture pattern of human molar with mesial-occlusal-distal restorations submitted or not to thermomechanical cycling were investigated (n=10) using: intact tooth (control), and restoration based on conventional microhybrid composite (Z250, 3M ESPE), low-viscosity (SDR Flow) or high-viscosity bulk-fill composites (Filtek BulkFill). The data were submitted to split-plot ANOVA (KHN), one-way ANOVA (MTBS), two-way ANOVA (FS) followed by Tukey’s test (α=0.05). For KHN, there was no significant difference for the resin composites between the top and bottom. For MTBS, no significant differences among the materials were detected; however, the low-viscosity composite presented lower frequency of adhesive failures. For FS, there was no significant difference between composites and intact tooth regardless of thermomechanical cycling. Low- and high-viscosity bulk-fill composites have comparable microhardness and microtensile bond strength when used in occlusal restorations. Likewise, the bulk-fill composites present similar fracture strength in molars with mesio-occlusal-distal restorations.


2021 ◽  
Vol 1016 ◽  
pp. 1538-1543
Author(s):  
Ganesan Swaminathan ◽  
Vedamanickam Sampath

Shape memory alloys (SMAs) find use in myriad medical and engineering applications. In these applications, the functional characteristics of the materials are capitalized on. SMAs are used repeatedly over a long period of time in service. With continued usage degradation occurs in their functional properties, leading to a change in recovery strain, recovery stress, phase transformation temperatures and hysteresis. The change in the functional characteristics of the alloys is known as functional fatigue. Functional fatigue affects the performance of the alloys with the alloys losing their intended functionality. This problem is to be addressed if the alloys are to be used effectively and efficiently throughout their lifespan. It is especially important when using the alloys within the human body, where such degradation can affect the performance of the biomedical devices and, in turn, human health and life. Till date not too many researchers have explored this area in greater detail. In order thereforeto better understand this behavior, in the present study, an Ni50Ti44.7Cu5.3 alloy wire with a d=1.43 mm and a l=100 mm was cycled (10,000) under constant stress (55 MPa) between its transformation temperatures, which were determined by DSC (without load). The effect of cycling on the shape memory properties (strain recovery, hysteresis, and transformation temperatures) after a specified number of cycles at regular intervals are considered. The results show that there is considerable difference in the properties obtained and are interpreted and discussed in detail in the paper.


2021 ◽  
Vol 100 (01) ◽  
pp. 27-39
Author(s):  
SAMUEL LUTHER ◽  
◽  
BOIAN ALEXANDROV

Face-centered cubic alloys, such as nickel-based alloys and austenitic stainless steels, are important to many industries, notably nuclear power generation and petrochemical. These alloys are prone to ductility-dip cracking (DDC), an inter-mediate-temperature, solid-state cracking phenomenon. They experience an abnormal elevated-temperature ductility loss, which leads to cracking upon applying sufficient restraint. A unified mechanism for DDC has been elusive. To learn more about DDC, an experimental procedure has been designed and evaluated for use in future studies. It is a thermomechanical test that replicates welding conditions via simulated strain ratcheting (SSR) using the Gleeble thermomechanical simulator. This study evaluates SSR and aims to establish the procedure is reproducible and adequately optimized for producing DDC. A design of experiments was created with four alloys tested at varying preloads, elevated temperature strains, and a number of thermomechanical cycles. Mechanical energy imposed within the DDC temperature range was used for quantification of the effect of thermomechanical cycling on the DDC response. The materials tested were 310 stainless steel and Nickel 201 base metals as well as nickel-based filler metals 52M and 52MSS. The SSR successfully recreated DDC while maintaining higher fidelity to actual production conditions than past laboratory tests and offered a more controlled environment than large-scale weld tests. Therefore, the SSR will provide a viable experimental procedure for learning more about the DDC mechanism.


Sign in / Sign up

Export Citation Format

Share Document