Under the dam’s feet: an ethnographic study of water flow in India’s Narmada River basin

Author(s):  
Vinod Kumar ◽  
Neeraj Mishra
Author(s):  
Vishal M. Rasal ◽  
Swapnil G. Yadre ◽  
Satya Prakash Shukla ◽  
P. M. Ravi ◽  
P. M. Ravi ◽  
...  

2003 ◽  
Vol 28 (20-27) ◽  
pp. 1165-1172 ◽  
Author(s):  
Lotta Andersson ◽  
Thomas Gumbricht ◽  
Denis Hughes ◽  
Dominic Kniveton ◽  
Susan Ringrose ◽  
...  

Author(s):  
O.I. Lukіanets ◽  
V.V Grebіn

In the article, in order to identify the generalized role of changes that occurred in the Psel River basin with such climatic indicators as air temperature, amount of precipitation, their form of precipitation, the structure of water bodies feeding, as well as water flow in the modern period, the average water balance for a long-term period was calculated the Psel river basin near the town of Gadyach. In general, the water balance equation shows the ratio of water input and consumption within a river basin, taking into account changes in its reserves over a selected time interval and allows one to assess the relationship of its individual components. In the article identifies changes in the ratio between the inflow (amount of precipitation) and consumption of water (total evaporation and runoff) for two periods – the climatic norm of 1961-1990 and modern 1990-2019. Analysis of the temporal dynamics of the water balance components of the Psel river basin showed that the values of the water balance components within the Psel river basin near the town of Gadyach in the modern period have decreased in comparison with the period of the climatic norm – the amount of precipitation by 6,2%, water flow by 17,5%, evapotranspiration by 1,8%. But, analyzing the relationship between the inflow and outflow of water in the basin for the two study periods 1961-1990 and 1990-2019, it can be stated that during the period of the climatic norm, the percentage of water flow from the total precipitation was greater (coefficient water flow 16.2%) than in the modern period (coefficient water flow 14.2%). With regard to total evaporation in water-balance ratios, its share in the water-balance ratio has increased over the modern period (1990-2019). If during the period of climatic normal (1961-1990) the aridity coefficient was 83.8%, then in the modern period, it is 85.8%. That is, the “redistribution” of the water volumes of atmospheric precipitation took place towards the total evaporation with a decrease in the volume of water used to form the water runoff. For the basin of the river Psel – the city of Gadyach in the modern period on the average ≈ 11 mm (or ≈ 130000000 m3) evaporate instead of replenishment of water resources. In the previous period of 1961-1990, on the contrary, ≈ 12 mm (or 136000000 m3) did not evaporate, but flowed into the water bodies of the basin.


2019 ◽  
Vol 11 (2) ◽  
pp. 338 ◽  
Author(s):  
Leting Lyu ◽  
Xiaorui Wang ◽  
Caizhi Sun ◽  
Tiantian Ren ◽  
Defeng Zheng

Based on a land use interpretation and distributed hydrological model, soil and water assessment tool (SWAT), this study simulated the hydrological cycle in Xihe River Basin in northern China. In addition, the influence of climate variability and land use change on green water resources in the basin from 1995 to 2015 was analyzed. The results show that (1) The ENS (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determination) were 0.94 and 0.89, respectively, in the calibration period, and 0.89 and 0.88, respectively, in the validation period. These indicate high simulation accuracy; (2) Changes in green water flow and green water storage due to climate variability accounted for increases of 2.07 mm/a and 1.28 mm/a, respectively. The relative change rates were 0.49% and 0.9%, respectively, and the green water coefficient decreased by 1%; (3) Changes in green water flow and green water storage due to land use change accounted for increases of 69.15 mm and 48.82 mm, respectively. The relative change rates were 16.4% and 37.2%, respectively, and the green water coefficient increased by 10%; (4) Affected by both climate variability and land use change, green water resources increased by 121.3 mm and the green water coefficient increased by 9% in the Xihe River Basin. It is noteworthy that the influence of land use change was greater than that of climate variability.


Sign in / Sign up

Export Citation Format

Share Document