Assessment of Nigeriasat-1 satellite data for urban land use/land cover analysis using object-based image analysis in Abuja, Nigeria

2017 ◽  
Vol 33 (9) ◽  
pp. 893-911 ◽  
Author(s):  
Christopher Ifechukwude Chima ◽  
Nigel Trodd ◽  
Matthew Blackett
Author(s):  
P. Kumar ◽  
S. Ravindranath ◽  
K. G. Raj

<p><strong>Abstract.</strong> Rapid urbanization of Indian cities requires a focused attention with respect to preparation of Master Plans of cities. Urban land use/land cover from very high resolution satellite data sets is an important input for the preparation of the master plans of the cities along with extraction of transportation network, infrastructure details etc. Conventional classifiers, which are pixel based do not yield reasonably accurate urban land use/land cover classification of very high resolution satellite data (usually merged images of Panchromatic &amp;amp; Multispectral). Object Based Image Classification techniques are being used to generate urban land use maps with ease which is GIS compatible while using very high resolution satellite data sets. In this study, Object Based Image Analysis (OBIA) has been used to create broad level urban Land Use / Land Cover (LU/LC) map using high resolution ResourceSat-2 LISS-4 and Cartosat-1 pan-sharpened image on the study area covering parts of East Delhi City. Spectral indices, geometric parameters and statistical textural methods were used to create algorithms and rule sets for feature classification. A LU/LC map of the study area comprising of 4 major LU/LC classes with its main focus on separation of barren areas from built up areas has been attempted. The overall accuracy of the result obtained is estimated to be approximately 70%.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 2377 ◽  
Author(s):  
John Mawenda ◽  
Teiji Watanabe ◽  
Ram Avtar

Rapid and unplanned urban growth has adverse environmental and social consequences. This is prominent in sub-Saharan Africa where the urbanisation rate is high and characterised by the proliferation of informal settlements. It is, therefore, crucial that urban land use/land cover (LULC) changes be investigated in order to enhance effective planning and sustainable growth. In this paper, the spatial and temporal LULC changes in Blantyre city were studied using the integration of remotely sensed Landsat imageries of 1994, 2007 and 2018, and a geographic information system (GIS). The supervised classification method using the support vector machine algorithm was applied to generate the LULC maps. The study also analysed the transition matrices derived from the classified map to identify prominent processes of changes for planning prioritisation. The results showed that the built-up class, which included urban structures such as residential, industrial, commercial and public installations, increased in the 24-year study period. On the contrary, bare land, which included vacant lands, open spaces with little or no vegetation, hilly clear-cut areas and other fallow land, declined over the study period. This was also the case with the vegetation class (i.e., forests, parks, permanent tree-covered areas and shrubs). The post-classification results revealed that the LULC changes during the second period (2007–2018) were faster compared to the first period (1994–2007). Furthermore, the results revealed that the increase in built-up areas systematically targeted the bare land and avoided the vegetated areas, and that the vegetated areas were systematically cleared to bare land during the study period (1994–2018). The findings of this study have revealed the pressure of human activities on the land and natural environment in Blantyre and provided the basis for sustainable urban planning and development in Blantyre city.


2007 ◽  
Vol 73 (12) ◽  
pp. 1403-1415 ◽  
Author(s):  
Soe W. Myint ◽  
Elizabeth A. Wentz ◽  
Sam J. Purkis

2020 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Dan Abudu ◽  
Nigar Sultana Parvin ◽  
Geoffrey Andogah

Conventional approaches for urban land use land cover classification and quantification of land use changes have often relied on the ground surveys and urban censuses of urban surface properties. Advent of Remote Sensing technology supporting metric to centimetric spatial resolutions with simultaneous wide coverage, significantly reduced huge operational costs previously encountered using ground surveys. Weather, sensor’s spatial resolution and the complex compositions of urban areas comprising concrete, metallic, water, bare- and vegetation-covers, limits Remote Sensing ability to accurately discriminate urban features. The launch of Sentinel-1 Synthetic Aperture Radar, which operates at metric resolution and microwave frequencies evades the weather limitations and has been reported to accurately quantify urban compositions. This paper assessed the feasibility of Sentinel-1 SAR data for urban land use land cover classification by reviewing research papers that utilised these data. The review found that since 2014, 11 studies have specifically utilised the datasets.


Urban Climate ◽  
2020 ◽  
Vol 32 ◽  
pp. 100616
Author(s):  
Pratiman Patel ◽  
Subhankar Karmakar ◽  
Subimal Ghosh ◽  
Dev Niyogi

Sign in / Sign up

Export Citation Format

Share Document